用户名: 密码: 验证码:
Facile method to synthesize magnetic iron oxides/TiO2 hybrid nanoparticles and their photodegradation application of methylene blue
详细信息    查看全文
  • 作者:Wei Wu (1) (2) (3)
    Xiangheng Xiao (1) (2)
    Shaofeng Zhang (1) (2)
    Feng Ren (1) (2)
    Changzhong Jiang (1) (2)
  • 关键词:magnetic iron oxide nanoparticles ; TiO2 ; hybrid structure ; photocatalyst ; methylene blue
  • 刊名:Nanoscale Research Letters
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:6
  • 期:1
  • 全文大小:2033KB
  • 参考文献:1. Tian ZRR, Voigt JA, Liu J, McKenzie B, McDermott MJ, Rodriguez MA, Konishi H, Xu HF: Complex and oriented ZnO nanostructures. / Nat Mater 2003, 2:821鈥?26. CrossRef
    2. Dobson J: Magnetic nanoparticles for drug delivery. / Drug Dev Res 2006, 67:55鈥?0. CrossRef
    3. Wu W, He QG, Jiang CZ: Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. / Nanoscale Res Lett 2008, 3:397鈥?15. CrossRef
    4. Shokouhimehr M, Piao YZ, Kim J, Jang YJ, Hyeon T: A magnetically recyclable nanocomposite catalyst for olefin epoxidation. / Angew Chem Int Ed 2007, 46:7039鈥?043. CrossRef
    5. Babes L, Denizot B, Tanguy G, Le Jeune JJ, Jallet P: Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. / J Colloid Interface Sci 1999, 212:474鈥?82. CrossRef
    6. Yao Y, Huang J, Yang J, McIntyre T, Chen J: Multimodality based diagnosis and treatment of breast cancer cells by magnetic nanoparticles coated by a gold shell with hyperthermia and radiation therapy. / Radiother Oncol 2007, 84:S78-S78.
    7. Qian ZY, Men K, Zeng S, Gou ML, Guo G, Gu YC, Luo F, Zhao X, Wei YQ: Preparation of magnetic microspheres based on Poly(epsilon-caprolactone)-Poly(ethylene glycol)-Poly(epsilon-caprolactone) copolymers by modified solvent diffusion method. / J Biomed Nanotechnol 2010, 6:287鈥?92. CrossRef
    8. Arkhis A, Elaissari A, Delair T, Verrier B, Mandrand B: Capture of enveloped viruses using polymer tentacles containing magnetic latex particles. / J Biomed Nanotechnol 2010, 6:28鈥?6. CrossRef
    9. He NY, Liu HN, Li S, Tian L, Liu LS: A novel single nucleotide polymorphisms detection sensors based on magnetic nanoparticles array and dual-color single base extension. / J Nanosci Nanotechnol 2010, 10:5311鈥?315. CrossRef
    10. Li ZY, He L, He NY, Shi ZY, Wang H, Li S, Liu HN, Dai YB: An applied approach in detecting E. coli O157:H7 using immunological method based on chemiluminescence and magnetic nanoparticles. / Acta Chim Sinica 2010, 68:251鈥?56.
    11. He NY, Li ZY, He L, Shi ZY, Wang H, Li S, Liu HN, Wang ZF: Preparation of SiO 2 /polymethyl methacrylate/Fe 3 O 4 nanoparticles and its application in detecting E. coli O157:H7 using chemiluminescent immunological method. / J Biomed Nanotechnol 2009, 5:505鈥?10. CrossRef
    12. He NY, Tian L, Li S, Liu HN, Wang ZF: An automated MagStation for high-throughput single nucleotide polymorphism genotyping and the dual-color hybridization. / J Biomed Nanotechnol 2009, 5:511鈥?15. CrossRef
    13. Gupta AK, Gupta M: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. / Biomaterials 2005, 26:3995鈥?021. CrossRef
    14. Janus M, Tryba B, Kusiak E, Tsumura T, Toyoda M, Inagaki M, Morawski A: TiO 2 nanoparticles with high photocatalytic activity under visible light. / Catal Lett 2009, 128:36鈥?9. CrossRef
    15. Hou YD, Wang XC, Wu L, Chen XF, Ding ZX, Wang XX, Fu XZ: N-doped SiO 2 /TiO 2 mesoporous nanoparticles with enhanced photocatalytic activity under visible-light irradiation. / Chemosphere 2008, 72:414鈥?21. CrossRef
    16. Wu ZB, Gu ZL, Zhao WR, Wang HQ: Photocatalytic oxidation of gaseous benzene over nanosized TiO 2 prepared by solvothermal method. / Chin Sci Bull 2007, 52:3061鈥?067. CrossRef
    17. Wang WJ, Zhang JL, Chen F, He DN, Anpo M: Preparation and photocatalytic properties of Fe 3+ -doped Ag@TiO 2 core-shell nanoparticles. / J Colloid Interface Sci 2008, 323:182鈥?86. CrossRef
    18. Kwak ES, Lee W, Park NG, Kim J, Lee H: Compact inverse-opal electrode using non-aggregated TiO 2 nanoparticles for dye-sensitized solar cells. / Adv Funct Mater 2009, 19:1093鈥?099. CrossRef
    19. Liu B, Aydil ES: Growth of oriented single-crystalline rutile TiO 2 nanorods on transparent conducting substrates for dye-sensitized solar sells. / J Am Chem Soc 2009, 131:3985鈥?990. CrossRef
    20. Zhao D, Peng TY, Lu LL, Cai P, Jiang P, Bian ZQ: Effect of annealing temperature on the photoelectrochemical properties of dye-sensitized solar cells made with mesoporous TiO 2 nanoparticles. / J Phys Chem C 2008, 112:8486鈥?494. CrossRef
    21. Baek IC, Vithal M, Chang JA, Yum JH, Nazeeruddin MK, Gratzel M, Chung YC, Seok SI: Facile preparation of large aspect ratio ellipsoidal anatase TiO 2 nanoparticles and their application to dye-sensitized solar cell. / Electrochem Commun 2009, 11:909鈥?12. CrossRef
    22. Cole-Hamilton DJ: Homogeneous catalysis-new approaches to catalyst separation, recovery, and recycling. / Science 2003, 299:1702鈥?706. CrossRef
    23. Wang J, Jing LQ, Xue LP, Qu YC, Fu HG: Enhanced activity of bismuth-compounded TiO 2 nanoparticles for photocatalytically degrading rhodamine B solution. / J Hazard Mater 2008, 160:208鈥?12. CrossRef
    24. Lopez T, Recillas S, Guevara P, Sotelo J, Alvarez M, Odriozola JA: Pt/TiO 2 brain biocompatible nanoparticles: GBM treatment using the C6 model in Wistar rats. / Acta Biomater 2008, 4:2037鈥?044. CrossRef
    25. Lv KL, Zuo HS, Sun J, Deng KJ, Liu SC, Li XF, Wang DY: (Bi, C and N) codoped TiO 2 nanoparticles. / J Hazard Mater 2009, 161:396鈥?01. CrossRef
    26. Xu JJ, Ao YH, Fu D, Yuan CW: Synthesis of Gd-doped TiO 2 nanoparticles under mild condition and their photocatalytic activity. / Colloid Surf A 2009, 334:107鈥?11. CrossRef
    27. Yue L, Zhang XM: Preparation of highly dispersed CeO 2 /TiO 2 core-shell nanoparticles. / Mater Lett 2008, 62:3764鈥?766. CrossRef
    28. Li Y, Wu JS, Qi DW, Xu XQ, Deng CH, Yang PY, Zhang XM: Novel approach for the synthesis of Fe 3 O 4 @TiO 2 core-shell microspheres and their application to the highly specific capture of phosphopeptides for MALDI-TOF MS analysis. / Chem Commun 2008, (5):564鈥?66.
    29. Mou F, Guan J, Xiao Z, Sun Z, Shi W, Fan XA: Solvent-mediated synthesis of magnetic Fe 2 O 3 chestnut-like amorphous-core/纬-phase-shell hierarchical nanostructures with strong As(v) removal capability. / J Mater Chem 2011, 21:5414鈥?421. CrossRef
    30. Guan JG, Mou FZ, Sun ZG, Shi WD: Preparation of hollow spheres with controllable interior structures by heterogeneous contraction. / Chem Commun 2010, 46:6605鈥?607. CrossRef
    31. Guan JG, Tong GX, Xiao ZD, Huang X, Guan Y: In situ generated gas bubble-assisted modulation of the morphologies, photocatalytic, and magnetic properties of ferric oxide nanostructures synthesized by thermal decomposition of iron nitrate. / J Nanopart Res 2010, 12:3025鈥?037. CrossRef
    32. Tong G, Guan J, Zhang Q: Goethite hierarchical nanostructures: Glucose-assisted synthesis, chemical conversion into hematite with excellent photocatalytic properties. / Mater Chem Phys 2011, 127:371鈥?78. CrossRef
    33. Chen CT, Chen YC: Fe 3 O 4 /TiO 2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO 2 surface-assisted laser desorption/ionization mass spectrometry. / Anal Chem 2005, 77:5912鈥?919. CrossRef
    34. Chen WJ, Tsai PJ, Chen YC: Functional Fe 3 O 4 /TiO 2 core/shell magnetic nanoparticles as photokilling agents for pathogenic bacteria. / Small 2008, 4:485鈥?91. CrossRef
    35. Wang CX, Yin LW, Zhang LY, Kang L, Wang XF, Gao R: Magnetic (纬-Fe 2 O 3 @SiO 2 ) n @TiO 2 functional hybrid nanoparticles with actived photocatalytic ability. / J Phys Chem C 2009, 113:4008鈥?011. CrossRef
    36. Yoon TJ, Lee W, Oh YS, Lee JK: Magnetic nanoparticles as a catalyst vehicle for simple and easy recycling. / New J Chem 2003, 27:227鈥?29. CrossRef
    37. Ishikawa T, Matijevic E: Formation of monodispersed pure and coated spindle-type iron particles. / Langmuir 1988, 4:26鈥?1. CrossRef
    38. Wu W, Xiao XH, Zhang SF, Li H, Zhou XD, Jiang CZ: One-pot reaction and subsequent annealing to synthesis hollow spherical magnetite and maghemite nanocages. / Nanoscale Res Lett 2009, 4:926鈥?31. CrossRef
    39. Massart R: Preparation of aqueous magnetic liquids in alkaline and acidic media. / IEEE Trans Magn 1981, 17:1247鈥?248. CrossRef
    40. Wu W, He Q, Chen H: Silane bridged surface tailoring on magnetite nanoparticles. / Bioinformatics and Biomedical Engineering 2007.
    41. Wu W, He QG, Chen H, Tang JX, Nie LB: Sonochemical synthesis, structure and magnetic properties of air-stable Fe 3 O 4 /Au nanoparticles. / Nanotechnology 2007, 18:145609. CrossRef
    42. Pearson RG: Hard and soft acids and bases. / J Am Chem Soc 1963, 85:3533鈥?539. CrossRef
    43. Gillet JN, Meunier M: General equation for size nanocharacterization of the core-shell nanoparticles by X-ray photoelectron spectroscopy. / J Phys Chem B 2005, 109:8733鈥?737. CrossRef
    44. Liu SY, Ma YH, Armes SP: Direct verification of the core-shell structure of shell cross-linked micelles in the solid state using X-ray photoelectron spectroscopy. / Langmuir 2002, 18:7780鈥?784. CrossRef
    45. Lu LH, Sun GY, Zhang HJ, Wang HS, Xi SQ, Hu JQ, Tian ZQ, Chen R: Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate. / J Mater Chem 2004, 14:1005鈥?009. CrossRef
    46. Remita H, Etcheberry A, Belloni J: Dose rate effect on bimetallic gold-palladium cluster structure. / J Phys Chem B 2003, 107:31鈥?6. CrossRef
    47. Toshima N, Yonezawa T, Kushihashi K: Polymer-protected palladium-platinum bimetallic clusters: preparation, catalytic properties and structural considerations. / J Chem Soc, Faraday Trans 1993, 89:2537鈥?543. CrossRef
    48. Wagner CD, Riggs WW, Davis LE, Moulder JF, Muilenberg GE: / Handbook of X-ray Photoelectron Spectroscopy. Eden Prairie: Perkin-Elmer Corporation, Physical Electronics Division; 1979.
    49. Tung WS, Daoud WA: New approach toward nanosized ferrous ferric oxide and Fe 3 O 4 -doped titanium dioxide photocatalysts. / ACS Appl Mater Interfaces 2009, 1:2453鈥?461. CrossRef
    50. Singh H, Laibinis PE, Hatton TA: Rigid, superparamagnetic chains of permanently linked beads coated with magnetic nanoparticles. Synthesis and rotational dynamics under applied magnetic fields. / Langmuir 2005, 21:11500鈥?1509. CrossRef
    51. Selvan RK, Augustin CO, Sanjeeviraja C, Prabhakaran D: Effect of SnO 2 coating on the magnetic properties of nanocrystalline CuFe 2 O 4 . / Solid State Commun 2006, 137:512鈥?16. CrossRef
    52. Xuan SH, Jiang WQ, Gong XL, Hu Y, Chen ZY: Magnetically separable Fe 3 O 4 /TiO 2 hollow spheres: Fabrication and photocatalytic activity. / J Phys Chem C 2009, 113:553鈥?58. CrossRef
    53. He QH, Zhang ZX, Xiong JW, Xiong YY, Xiao H: A novel biomaterial - Fe 3 O 4 :TiO 2 core-shell nanoparticle with magnetic performance and high visible-light photocatalytic activity. / Opt Mater 2008, 31:380鈥?84. CrossRef
    54. Bodker F, Hansen MF, Koch CB, Lefmann K, Morup S: Magnetic properties of hematite nanoparticles. / Phys Rev B 2000, 61:6826鈥?838. CrossRef
    55. Mansilla MV, Zysler R, Fiorani D, Suber L: Annealing effects on magnetic properties of acicular hematite nanoparticles. / Physica B-Condensed Matter 2002, 320:206鈥?09. CrossRef
    56. Tadic M, Kusigerski V, Markovic D, Milosevic I, Spasojevic V: High concentration of hematite nanoparticles in a silica matrix: structural and magnetic properties. / J Magn Magn Mater 2009, 321:12鈥?6. CrossRef
    57. More AM, Gujar TP, Gunjakar JL, Lokhande CD, Joo OS: Growth of TiO 2 nanorods by chemical bath deposition method. / Appl Surf Sci 2008, 255:2682鈥?687. CrossRef
    58. Park JT, Koh JH, Koh JK, Kim JH: Surface-initiated atom transfer radical polymerization from TiO 2 nanoparticles. / Appl Surf Sci 2009, 255:3739鈥?744. CrossRef
    59. Segets D, Gradl J, Taylor RK, Vassilev V, Peukert W: Analysis of optical absorbance spectra for the determination of ZnO nanoparticle size distribution, solubility, and surface energy. / Acs Nano 2009, 3:1703鈥?710. CrossRef
    60. Sciancalepore C, Cassano T, Curri ML, Mecerreyes D, Valentini A, Agostiano A, Tommasi R, Striccoli M: TiO 2 nanorods/PMMA copolymer-based nanocomposites: highly homogeneous linear and nonlinear optical material. / Nanotechnology 2008, 19:205705. CrossRef
    61. Pankove JI: / Optical Processes in Semiconductors. Mineola, New York: Courier Dover Publications; 1975.
    62. Wu W, Xiao XH, Peng TC, Jiang CZ: Controllable Ssynthesis and optical properties of connected zinc oxide nanoparticles. / Chem-Asian J 2010, 5:315鈥?21. CrossRef
    63. Fujishima A, Honda K: Electrochemical photolysis of water at a semiconductor electrode. / Nature 1972, 238:37鈥?8. CrossRef
    64. Chen X, Mao SS: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. / Chem Rev 2007, 107:2891鈥?959. CrossRef
    65. Song HM, Ko JM, Park JH: Hybrid photoreactive magnet obtained from Fe 3 O 4 /TiO 2 composite nanoparticles. / Chem Lett 2009, 38:612鈥?13. CrossRef
    66. Sato T, Yamamoto Y, Fujishiro Y, Uchida S: Intercalation of iron oxide in layered H 2 Ti 4 O 9 and H 4 Nb 6 O 17 : visible-light induced photocatalytic properties. / J Chem Soc, Faraday Trans 1996, 92:5089鈥?092. CrossRef
    67. Kang M, Choung SJ, Park JY: Photocatalytic performance of nanometer-sized Fe x O y /TiO 2 particle synthesized by hydrothermal method. / Catal Today 2003, 87:87鈥?7. CrossRef
    68. Thongsuwan W, Kumpika T, Singjai P: Photocatalytic property of colloidal TiO 2 nanoparticles prepared by sparking process. / Curr Appl Phys 2008, 8:563鈥?68. CrossRef
    69. Wu BC, Yuan RS, Fu XZ: Structural characterization and photocatalytic activity of hollow binary ZrO 2 /TiO 2 oxide fibers. / J Solid State Chem 2009, 182:560鈥?65. CrossRef
    70. Xiao Q, Si Z, Zhang J, Xiao C, Zhiming Y, Qiu G: Effects of samarium dopant on photocatalytic activity of TiO 2 nanocrystallite for methylene blue degradation. / J Mater Sci 2007, 42:9194鈥?199. CrossRef
    71. Wu W, Xiao X, Zhang S, Zhou J, Ren F, Jiang C: Controllable synthesis of TiO 2 submicrospheres with smooth or rough surface. / Chem Lett 2010, 39:684鈥?85. CrossRef
    72. Hoffmann MR, Martin ST, Choi W, Bahnemann DW: Environmental applications of semiconductor photocatalysis. / Chem Rev 1995, 95:69鈥?6. CrossRef
    73. Zhang XW, Du AJ, Lee PF, Sun DD, Leckie JO: TiO 2 nanowire membrane for concurrent filtration and photocatalytic oxidation of humic acid in water. / J Membr Sci 2008, 313:44鈥?1. CrossRef
    74. Zhang XW, Pan JH, Du AJ, Xu SP, Sun DD: Room-temperature fabrication of anatase TiO 2 submicrospheres with nanothornlike shell for photocatalytic degradation of methylene blue. / J Photochem Photobio A 2009, 204:154鈥?60. CrossRef
  • 作者单位:Wei Wu (1) (2) (3)
    Xiangheng Xiao (1) (2)
    Shaofeng Zhang (1) (2)
    Feng Ren (1) (2)
    Changzhong Jiang (1) (2)

    1. Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, People鈥檚 Republic of China
    2. Center for Electron Microscopy and School of Physics and Technology, Wuhan University, Wuhan, 430072, People鈥檚 Republic of China
    3. School of Printing and Packaging, Wuhan University, Wuhan, 430079, People鈥檚 Republic of China China
  • ISSN:1556-276X
文摘
Many methods have been reported to improving the photocatalytic efficiency of organic pollutant and their reliable applications. In this work, we propose a facile pathway to prepare three different types of magnetic iron oxides/TiO2 hybrid nanoparticles (NPs) by seed-mediated method. The hybrid NPs are composed of spindle, hollow, and ultrafine iron oxide NPs as seeds and 3-aminopropyltriethyloxysilane as linker between the magnetic cores and TiO2 layers, respectively. The composite structure and the presence of the iron oxide and titania phase have been confirmed by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectra. The hybrid NPs show good magnetic response, which can get together under an external applied magnetic field and hence they should become promising magnetic recovery catalysts (MRCs). Photocatalytic ability examination of the magnetic hybrid NPs was carried out in methylene blue (MB) solutions illuminated under Hg light in a photochemical reactor. About 50% to 60% of MB was decomposed in 90 min in the presence of magnetic hybrid NPs. The synthesized magnetic hybrid NPs display high photocatalytic efficiency and will find recoverable potential applications in cleaning polluted water with the help of magnetic separation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700