用户名: 密码: 验证码:
Performance of Cu-Alloyed Pd Single-Atom Catalyst for Semihydrogenation of Acetylene under Simulated Front-End Conditions
详细信息    查看全文
文摘
Selective hydrogenation of acetylene to ethylene is an industrially important reaction. Pd-based catalysts have been proved to be efficient for the acetylene conversion, while enhancing the selectivity to ethylene is challenging. Here, we chose Cu as the partner of Pd, fabricated an alloyed Pd single-atom catalyst (SAC), and investigated its catalytic performance for the selective hydrogenation of acetylene to ethylene under a simulated front-end hydrogenation process in industry: that is, with a high concentration of hydrogen and ethylene. The Cu-alloyed Pd SAC showed ∼85% selectivity to ethylene and 100% acetylene elimination. In comparison with the Au- or Ag-alloyed Pd SAC, the Cu-alloyed analogue exceeded both of them in conversion, while the selectivity rivaled that of the Ag-alloyed Pd SAC and surpassed that of the Au-alloyed Pd SAC. As Cu is a low-cost metal, Cu-alloyed Pd SAC would minimize the noble-metal usage and possess high utilization potential for industry. The Cu-alloyed Pd SAC was verified by EXAFS, with the Pd/Cu atomic ratio lowered to 0.006, corresponding to the loading of Pd at 494 ppm. The microcalorimetric measurement results demonstrated that the adsorption of C2H4 over the Cu-alloyed Pd SAC was weaker than that over the catalyst with large Pd ensembles; thus, the selectivity to ethylene was greatly enhanced. At the same time, the adsorption of H2 was stronger than that over the corresponding monometallic Cu catalyst; thus, the activation of H2 was obviously promoted. On the basis of the above results, a possible reaction path over the Cu-alloyed Pd SAC was proposed. Furthermore, by systematic comparison of the IB-metal-alloyed Pd SACs, we found that the apparent activation energies of the IB-metal-alloyed Pd SACs were close to each other, indicating similar active sites and/or catalytic mechanisms over the three catalysts. The isolation of the Pd atoms by the IB metal distinctly contributed to both the conversion and the selectivity. Further DFT calculation results suggested that electron transfer between the IB metal and Pd might be responsible for their different selectivities to ethylene.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700