用户名: 密码: 验证码:
Hot Electron Collection on Brookite Nanorods Lateral Facets for Plasmon-Enhanced Water Oxidation
详细信息    查看全文
文摘
Photocatalytic reactions could enhance the share of chemicals produced through renewable sources. The efficiency of photocatalysts drastically depends on light absorption, on the surface energy of the crystals, and on the properties of the nanobuilding blocks assembled in devices. Here, we show that photoelectrochemical water oxidation on brookite TiO2 nanorods is greatly enhanced by engineering the location of Au nanoparticles deposition. Brookite photoanodes show a very low onset potential for water oxidation to H2O2 of −0.2 VRHE due to energetics of exposed crystal facets. By combining electrochemical measurements and ultrafast optical spectroscopy, we link the water oxidation activity with electron–hole recombination phenomena. The preferential Au decoration at the electrode/water interface produces highly enhanced photocurrent, while when Au is distributed along the whole film thickness, the activity is depressed with respect to pure brookite. In the latter case, Au nanoparticles act as recombination centers with plasmonic carriers recombining on the same time scale of their generation (fs). Conversely, Au surface decoration enables a hot electrons lifetime 4 orders of magnitude longer (ns) due to efficient hopping on brookite lateral facets, thus providing an efficient path for plasmon-enhanced solar water oxidation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700