用户名: 密码: 验证码:
Extremely High Barrier Performance of Organic–Inorganic Nanolaminated Thin Films for Organic Light-Emitting Diodes
详细信息    查看全文
文摘
This work presents a novel barrier thin film based on an organic–inorganic nanolaminate, which consists of alternating nanolayers of self-assembled organic layers (SAOLs) and Al2O3. The SAOLs-Al2O3 nanolaminated films were deposited using a combination of molecular layer deposition and atomic layer deposition techniques at 80 °C. Modulation of the relative thickness ratio of the SAOLs and Al2O3 enabled control over the elastic modulus and stress in the films. Furthermore, the SAOLs-Al2O3 thin film achieved a high degree of mechanical flexibility, excellent transmittance (>95%), and an ultralow water-vapor transmission rate (2.99 × 10–7 g m–2 day–1), which represents one of the lowest permeability levels ever achieved by thin film encapsulation. On the basis of its outstanding barrier properties with high flexibility and transparency, the nanolaminated film was applied to a commercial OLEDs panel as a gas-diffusion barrier film. The results showed defect propagation could be significantly inhibited by incorporating the SAOLs layers, which enhanced the durability of the panel.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700