用户名: 密码: 验证码:
Atomic-Scale Mechanism on Nucleation and Growth of Mo2C Nanoparticles Revealed by in Situ Transmission Electron Microscopy
详细信息    查看全文
文摘
With a similar electronic structure as that of platinum, molybdenum carbide (Mo2C) holds significant potential as a high performance catalyst across many chemical reactions. Empirically, the precise control of particle size, shape, and surface nature during synthesis largely determines the catalytic performance of nanoparticles, giving rise to the need of clarifying the underlying growth characteristics in the nucleation and growth of Mo2C. However, the high-temperature annealing involved during the growth of carbides makes it difficult to directly observe and understand the nucleation and growth processes. Here, we report on the use of advanced in situ transmission electron microscopy with atomic resolution to reveal a three-stage mechanism during the growth of Mo2C nanoparticles over a wide temperature range: initial nucleation via a mechanism consistent with spinodal decomposition, subsequent particle coalescence and monomer attachment, and final surface faceting to well-defined particles with minimum surface energy. These microscopic observations made under a heating atmosphere offer new perspectives toward the design of carbide-based catalysts, as well as the tuning of their catalytic performances.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700