用户名: 密码: 验证码:
Amphiphilic PEG-Functionalized Gradient Copolymers via Tandem Catalysis of Living Radical Polymerization and Transesterification
详细信息    查看全文
文摘
Amphiphilic gradient copolymers with poly(ethylene glycol) pendants were synthesized via tandem catalysis of ruthenium-catalyzed living radical polymerization (LRP) and titanium alkoxide-mediated transesterification. The gradient sequence can be catalytically controlled by tuning the kinetic balance of the two reactions. The tandem catalysis is one of the most efficient and versatile systems to produce amphiphilic gradient and sequence-controlled copolymers. Typically, methyl methacrylate (MMA) was polymerized as a starting monomer with a ruthenium catalyst and a chloride initiator in the presence of Ti(Oi-Pr)4 and molecular sieves (MS 4A) in poly(ethylene glycol) methyl ether (PEG-OH) as a solvent at 80 °C. Hydrophobic MMA was concurrently transesterified into hydrophilic PEG methacrylate (PEGMA) during LRP to give MMA/PEGMA gradient copolymers. The gradient sequence is directly determined by the instantaneous monomer composition changing from MMA alone to PEGMA-rich mixture in solution. Synchronized catalysis of LRP and transesterification thus affords gradient copolymers whose composition linearly changes from an initiating terminal to a growing counterpart. Additionally, amphiphilic MMA/PEGMA gradient copolymers showed self-assembly, thermoresponsive, and thermal properties specific to the gradient sequence, distinct from amphiphilic random or block counterparts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700