用户名: 密码: 验证码:
Identification of the Mechanism of Electrocatalytic Ozone Generation on Ni/Sb-SnO2
详细信息    查看全文
文摘
This paper reports a systematic study of the codoping of SnO2 with Sb and Ni to identify the mechanism responsible for the electrocatalytic generation of ozone on Ni/Sb-SnO2. On the basis of interpretation of a combination of X-ray diffraction, BET surface area measurements (N2), and thermal analysis, the formation of ozone appears to take place on particle surfaces of composite Sb-SnO2 grains and is controlled by diffusion of OH along internal crystallite surfaces within the grain. Sb-doped SnO2 is inactive with respect to ozone evolution in the absence of Ni, demonstrating a synergic interaction between nickel and antimony. From X-ray photoelectron spectroscopy (XPS) investigations, Sb(V) ions substitute for Sn(IV) in the lattice with a preference for centrosymmetric coordination sites, while the Sb(III) ions occur at grain surfaces or boundaries. Ni was not detected by XPS, being located in the subsurface region at concentrations below the detection limit of the instrument. In addition to identification of a possible mechanism for ozone formation, the study resulted in the production of active nanopowders which will allow the fabrication of high-surface-area anodes with the potential to exceed the space-time yields of β-PbO2 anodes, permitting the application the Ni/Sb-SnO2 anodes in the treatment of real waters.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700