用户名: 密码: 验证码:
From Solution to Biointerface: Graphene Self-Assemblies of Varying Lateral Sizes and Surface Properties for Biofilm Control and Osteodifferentiation
详细信息    查看全文
文摘
Bringing multifunctional graphene out of solution through facile self-assembly to form 2D surface nanostructures, with control over the lateral size and surface properties, would be an intriguing accomplishment, especially in biomedical fields where biointerfaces with functional diversity are in high demand. Guided by this goal, in this work, we built such graphene-based self-assemblies on orthopedic titanium, attempting to selectively regulate bacterial activities and osteoblastic functions, which are both crucial in bone regeneration. Briefly, large-area graphene oxide (GO) sheets and functionalized reduced GO (rGO) micro-/nanosheets were self-assembled spontaneously and controllably onto solid Ti, through an evaporation-assisted electrostatic assembly process and a mussel-inspired one-pot assembly process, respectively. The resultant layers were characterized in terms of topological structure, chemical composition, hydrophilicity, and protein adsorption properties. The antibacterial efficacies of the assemblies were examined by challenging them with pathogenic Staphylococcus aureus (S. aureus) bacteria that produce biofilms, whereby around 50% antiadhesion effects and considerable antibiofilm activities were observed for both layer types but through dissimilar modes of action. Their cytocompatibility and osteogenic potential were also investigated. Interfaced with MC3T3-E1 cells, the functionalized rGO sheets evoked better cell adhesion and growth than GO sheets, whereas the latter elicited higher osteodifferentiation activity throughout a 28-day in vitro culture. In this work, we showed that it is technically possible to construct graphene interface layers of varying lateral dimensions and surface properties and confirmed the concept of using the obtained assemblies to address the two major challenges facing orthopedic clinics. In addition, we determined fundamental implications for understanding the surface–biology relationship of graphene biomaterials, in efforts to better design and more safely use them for future biomedicine.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700