用户名: 密码: 验证码:
High Voltage Mg-Doped Na0.67Ni0.3–xMgxMn0.7O2 (x = 0.05, 0.1) Na-Ion Cathodes with Enhanced Stability and Rate Capability
详细信息    查看全文
文摘
Magnesium substituted P2-structure Na0.67Ni0.3Mn0.7O2 materials have been prepared by a facile solid-state method and investigated as cathodes in sodium-ion batteries. The Mg-doped materials described here were characterized by X-ray diffraction (XRD), 23Na solid-state nuclear magnetic resonance (SS-NMR), and scanning electron microscopy (SEM). The electrochemical performance of the samples was tested in half cells vs Na metal at room temperature. The Mg-doped materials operate at a high average voltage of ca. 3.3 V vs Na/Na+ delivering specific capacities of ∼120 mAh g–1, which remain stable up to 50 cycles. Mg doping suppresses the well-known P2–O2 phase transition observed in the undoped composition by stabilizing the reversible OP4 phase during charging (during Na removal). GITT measurements showed that the Na-ion mobility is improved by 2 orders of magnitude with respect to the parent P2–Na0.67Ni0.3Mn0.7O2 material. The fast Na-ion mobility may be the cause of the enhanced rate performance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700