用户名: 密码: 验证码:
Effective Heat Dissipation from Color-Converting Plates in High-Power White Light Emitting Diodes by Transparent Graphene Wrapping
详细信息    查看全文
文摘
We have developed a hybrid phosphor-in-glass plate (PGP) for application in a remote phosphor configuration of high-power white light emitting diodes (WLEDs), in which single-layer graphene was used to modulate the thermal characteristics of the PGP. The degradation of luminescence in the PGP following an increase in temperature could be prevented by applying single-layer graphene. First, it was observed that the emission intensity of the PGP was enhanced by about 20% with graphene wrapping. Notably, the surface temperature of the graphene-wrapped PGP (G-PGP) was found to be higher than that of the bare PGP, implying that the graphene layer effectively acted as a heat dissipation medium on the PGP surface to reduce the thermal quenching of the constituent phosphors. Moreover, these experimental observations were clearly verified through a two-dimensional cellular automata simulation technique and the underlying mechanisms were analyzed. As a result, the proposed G-PGP was found to be efficient in maintaining the luminescence properties of the WLED, and is a promising development in high power WLED applications. This research could be further extended to generate a new class of optical or optoelectronic materials with possible uses in a variety of applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700