用户名: 密码: 验证码:
Asymmetric Response of Ferroelastic Domain-Wall Motion under Applied Bias
详细信息    查看全文
文摘
The switching of domains in ferroelectric and multiferroic materials plays a central role in their application to next-generation computer systems, sensing applications, and memory storage. A detailed understanding of the response to electric fields and the switching behavior in the presence of complex domain structures and extrinsic effects (e.g., defects and dislocations) is crucial for the design of improved ferroelectrics. In this work, in situ transmission electron microscopy is coupled with atomistic molecular dynamics simulations to explore the response of 71° ferroelastic domain walls in BiFeO3 with various orientations under applied electric-field excitation. We observe that 71° domain walls can have intrinsically asymmetric responses to opposing biases. In particular, when the electric field has a component normal to the domain wall, forward and backward domain-wall velocities can be dramatically different for equal and opposite fields. Additionally, the presence of defects and dislocations can strongly affect the local switching behaviors through pinning or nucleation of the domain walls. These results offer insight for controlled ferroelastic domain manipulation via electric-field engineering.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700