用户名: 密码: 验证码:
Mechanism of Copper(I)-Catalyzed 5-Iodo-1,2,3-triazole Formation from Azide and Terminal Alkyne
详细信息    查看全文
文摘
5-Iodo-1,2,3-triazole (iodotriazole) can be prepared from a copper(I)-catalyzed reaction between azide and terminal alkyne in the presence of an iodinating agent, with 5-protio-1,2,3-triazole (protiotriazole) as the side product. The increasing utilities of iodotriazoles in synthetic and supramolecular chemistry drive the efforts in improving their selective syntheses based on a sound mechanistic understanding. A routinely proposed mechanism takes the cue from the copper(I)-catalyzed azide鈥揳lkyne cycloaddition, which includes copper(I) acetylide and triazolide as the early and the late intermediates, respectively. Instead of being protonated to afford protiotriazole, an iodinating agent presumably intercepts the copper(I) triazolide to give iodotriazole. The current work shows that copper(I) triazolide can be iodinated to afford iodotriazoles. However, when the reaction starts from a terminal alkyne as under the practical circumstances, 1-iodoalkyne (iodoalkyne) is an intermediate while copper(I) triazolide is bypassed on the reaction coordinate. The production of protiotriazole commences after almost all of the iodoalkyne is consumed. Using 1H NMR to follow a homogeneous iodotriazole forming reaction, the rapid formation of an iodoalkyne is shown to dictate the selectivity of an iodotriazole over a protiotriazole. To ensure the exclusive production of iodotriazole, the complete conversion of an alkyne to an iodoalkyne has to, and can be, achieved at the early stage of the reaction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700