用户名: 密码: 验证码:
Integrative Proteomics and Targeted Transcriptomics Analyses in Cardiac Endothelial Cells Unravel Mechanisms of Long-Term Radiation-Induced Vascular Dysfunction
详细信息    查看全文
文摘
Epidemiological data from radiotherapy patients show the damaging effect of ionizing radiation on heart and vasculature. The endothelium is the main target of radiation damage and contributes essentially to the development of cardiac injury. However, the molecular mechanisms behind the radiation-induced endothelial dysfunction are not fully understood. In the present study, 10-week-old C57Bl/6 mice received local X-ray heart doses of 8 or 16 Gy and were sacrificed after 16 weeks; the controls were sham-irradiated. The cardiac microvascular endothelial cells were isolated from the heart tissue using streptavidin-CD31-coated microbeads. The cells were lysed and proteins were labeled with duplex isotope-coded protein label methodology for quantification. All samples were analyzed by LC鈥揈SI鈥揗S/MS and Proteome Discoverer software. The proteomics data were further studied by bioinformatics tools and validated by targeted transcriptomics, immunoblotting, immunohistochemistry, and serum profiling. Radiation-induced endothelial dysfunction was characterized by impaired energy metabolism and perturbation of the insulin/IGF-PI3K-Akt signaling pathway. The data also strongly suggested premature endothelial senescence, increased oxidative stress, decreased NO availability, and enhanced inflammation as main causes of radiation-induced long-term vascular dysfunction. Detailed data on molecular mechanisms of radiation-induced vascular injury as compiled here are essential in developing radiotherapy strategies that minimize cardiovascular complications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700