用户名: 密码: 验证码:
Monomerizing Alkali-Metal 3,5-Dimethylbenzyl Salts with Tris(N, N-dimethyl-2-aminoethyl)amine (Me6TREN): Structural and Bonding Implications
详细信息    查看全文
文摘
The series of alkali-metal (Li, Na, K) complexes of the substituted benzyl anion 3,5-dimethylbenzyl (Me2C6H3CH2鈥?/sup>) derived from 1,3,5-trimethylbenzene (mesitylene) have been coerced into monomeric forms by supporting them with the tripodal tetradentate Lewis donor tris(N,N-dimethyl-2-aminoethyl)amine, [N(CH2CH2NMe2)3, Me6TREN]. Molecular structure analysis by X-ray crystallography establishes that the cation鈥揳nion interaction varies as a function of the alkali-metal, with the carbanion binding to lithium mainly in a 蟽 fashion, to potassium mainly in a 蟺 fashion, with the interaction toward sodium being intermediate between these two extremes. This distinction is due to the heavier alkali-metal forcing and using the delocalization of negative charge into the aromatic ring to gain a higher coordination number in accordance with its size. Me6TREN binds the metal in a 畏4 mode at all times. This coordination isomerism is shown by multinuclear NMR spectroscopy to also extend to the structures in solution and is further supported by density functional theory (DFT) calculations on model systems. A Me6TREN stabilized benzyl potassium complex has been used to prepare a mixed-metal ate complex by a cocomplexation reaction with tBu2Zn, with the benzyl ligand acting as an unusual ditopic 蟽/蟺 bridging ligand between the two metals, and with the small zinc atom relocalizing the negative charge back on to the lateral CH2 arm to give a complex best described as a contacted ion pair potassium zincate.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700