用户名: 密码: 验证码:
Cellular Trafficking of Quantum Dot-Ligand Bioconjugates and Their Induction of Changes in Normal Routing of Unconjugated Ligands
详细信息    查看全文
文摘
Can quantum dots (Qdots) act as relevant intracellular probes to investigate routing of ligands in live cells? The intracellular trafficking of Qdots that were coupled to the plant toxin ricin, Shiga toxin, or the ligand transferrin (Tf) was studied by confocal fluorescence microscopy. The Tf:Qdots were internalized by clathrin-dependent endocytosis as fast as Tf, but their recycling was blocked. Unlike Shiga toxin, the Shiga:Qdot bioconjugate was not routed to the Golgi apparatus. The internalized ricin:Qdot bioconjugates localized to the same endosomes as ricin itself but could not be visualized in the Golgi apparatus. Importantly, we find that the endosomal accumulation of ricin:Qdots affects endosome-to-Golgi transport of both ricin and Shiga toxin: Transport of ricin was reduced whereas transport of Shiga toxin was increased. In conclusion, the data reveal that, although coupling of Qdots to a ligand does not necessarily change the endocytic pathway normally used by the ligands studied, it appears that the ligand-coupled Qdot nanoparticles can be arrested within endosomes and somehow perturb the normal endosomal sorting in cells. Thus, the results demonstrate that Qdots may have severe consequences on cell physiology.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700