用户名: 密码: 验证码:
Side-Chain Conformational Changes of Transcription Factor PhoB upon DNA Binding: A Population-Shift Mechanism
详细信息    查看全文
文摘
Using molecular dynamics (MD) simulations and analyses of NMR relaxation order parameters, we investigated conformational changes of side chains in hydrophobic cores upon DNA binding for the DNA binding/transactivation domain of the transcription factor PhoB, in which backbone conformational changes upon DNA binding are small. The simulation results correlated well with experimental order parameters for the backbone and side-chain methyl groups, showing that the order parameters generally represent positional fluctuations of the backbone and side-chain methyl groups. However, topological effects of the side chains on the order parameters were also found and could be eliminated using normalized order parameters for each amino acid type. Consistent with the NMR experiments, the normalized order parameters from the MD simulations showed that the side chains in one of the two hydrophobic cores (the soft core) were highly flexible in comparison with those in the other hydrophobic core (the hard core) before DNA binding and that the flexibility of the hydrophobic cores, particularly of the soft core, was reduced upon DNA binding. Principal component analysis of methyl group configurations revealed strikingly different side-chain dynamics for the soft and hard cores. In the hard core, side-chain configurations were simply distributed around one or two average configurations. In contrast, the side chains in the soft core dynamically varied their configurations in an equilibrium ensemble that included binding configurations as minor components before DNA binding. DNA binding led to a restriction of the side-chain dynamics and a shift in the equilibrium toward binding configurations, in clear correspondence with a population-shift model.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700