用户名: 密码: 验证码:
Rational eigenvalue problems and applications to photonic crystals
详细信息    查看全文
文摘
We establish new analytic results for a general class of rational spectral problems. They arise e.g. in modelling photonic crystals whose capability to control the flow of light depends on specific features of the eigenvalues. Our results comprise a complete spectral analysis including variational principles and two-sided bounds for all eigenvalues, as well as numerical implementations. They apply to the eigenvalues between the poles where classical variational principles fail completely. In the application to multi-pole Lorentz models of permittivity functions we show, in particular, that our abstract two-sided eigenvalue estimates are optimal and we derive explicit bounds on the band gap above a Lorentz pole. A high order finite element method (FEM) is used to compute the two-sided bounds for a selection of eigenvalues for several concrete Lorentz models, e.g. polaritonic materials and multi-pole models.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700