用户名: 密码: 验证码:
Sirtuin 2 aggravates postischemic liver injury by deacetylating mitogen‐activated protein kinase phosphatase‿
详细信息    查看全文
文摘
Sirtuin 2 (Sirt2) is known to negatively regulate anoxia-reoxygenation injury in myoblasts. Because protein levels of Sirt2 are increased in ischemia-reperfusion (I/R)-injured liver tissues, we examined whether Sirt2 is protective or detrimental against hepatic I/R injury. We overexpressed Sirt2 in the liver of C57BL/6 mice using a Sirt2 adenovirus. Wild-type and Sirt2 knockout mice were subjected to a partial (70%) hepatic ischemia for 45 minutes, followed by various periods of reperfusion. In another set of experiments, wild-type mice were pretreated intraperitoneally with AGK2, a Sirt2 inhibitor. Isolated hepatocytes and Kupffer cells from wild-type and Sirt2 knockout mice were subjected to hypoxia-reoxygenation injury to determine the in vitro effects of Sirt2. Mice subjected to I/R injury showed typical patterns of hepatocellular damage. Prior injection with Sirt2 adenovirus aggravated liver injury, as demonstrated by increases in serum aminotransferases, prothrombin time, proinflammatory cytokines, hepatocellular necrosis and apoptosis, and neutrophil infiltration relative to control virus-injected mice. Pretreatment with AGK2 resulted in significant improvements in serum aminotransferase levels and histopathologic findings. Similarly, experiments with Sirt2 knockout mice also revealed reduced hepatocellular injury. The molecular mechanism of Sirt2's involvement in this aggravation of hepatic I/R injury includes the deacetylation and inhibition of mitogen-activated protein kinase phosphatase-1 and consequent activation of mitogen-activated protein kinases. Conclusion: Sirt2 is an aggravating factor during hepatic I/R injury. (Hepatology 2017;65:225-236).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700