用户名: 密码: 验证码:
Effects of coal pore structure on methane‐coal sorption hysteresis: An experimental investigation based on fractal analysis and hysteresis evaluation
详细信息       来源:Fuel    发布日期:2021年2月4日
  • 标题:Effects of coal pore structure on methane‐coal sorption hysteresis: An experimental investigation based on fractal analysis and hysteresis evaluation
  • 关键词:Coal,Methane,Physisorption,Fractal dimension,Hysteresis evaluation
  • 作者:Xinxin He, Yuanping Cheng, Biao Hu, Zhenyang Wang, Chenghao Wang Minghao Yi, Liang Wang

全文下载

内容简介线

To investigate the effects of coal pore structure on the methane‐coal sorption hysteresis, six coal samples were collected. The methane‐coal sorption measurement was performed at 35 °C and pressure up to 5.5 MPa using a high-pressure volumetric analysis system (HPVAS). With the help of N2 physisorption at 77 K and CO2 physisorption at 273 K, basic pore properties including specific surface area (SSA), mode diameters and pore size distribution (PSD) were obtained through classical thermodynamic methods and the advanced density functional theory (DFT). A Fréchet distance index (FDI) based on the resemblance of two curves was proposed to overcome the difficulty in quantitatively evaluating the methane‐coal sorption hysteresis. Quantified heterogeneity of the coal pore structure by five fractal dimensions derived from Frenkel-Halsey-Hill model (DFHH1 and DFHH2), Neimark-Kiselev model (DNK), Wang-Li model (DWL) and Sierpinski model (DSPS) was coupled with the FDI for regression analyses. Results indicate that increasing SSA and stronger first-layer adsorption energy may exacerbate the methane-coal sorption hysteresis, while no satisfactory correlation was observed between the methane-coal sorption hysteresis and the pore volume. Wider Dubinin-Astakhov PSD and bigger mode diameters were found corresponding to smaller FDIs indicating reduced methane-coal sorption hysteresis. Correlation between the FDI and the fractal dimensions revealed a possible positive correlation between the methane-coal sorption hysteresis and the heterogeneity of the coal pore structure, especially for DFHH2 whose applied pore widths were 2.78–385 nm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700