平面不对称结构非弹性地震反应分析的平扭耦联Bouc-Wen模型
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
综合考虑强度退化、刚度退化、捏拢效应等典型滞回特性的影响,建立了双向地震作用下平面不对称结构非弹性地震动力响应分析的平扭耦联Bouc-Wen模型。该模型采用圆形屈服面来描述双向抗侧恢复力之间的耦合效应,而采用锥体或球体屈服面来描述双向抗侧和抗扭恢复力之间的耦合效应,并结合69条强震记录,定量地分析了平扭耦联效应对平面不对称结构地震延性需求的概率统计特征的影响。计算结果显示:球体屈服面比锥体屈服面更能合理描述双向抗侧恢复力和抗扭恢复力之间的耦合效应;地震延性需求的均值随着规一化屈服强度和非耦联平动自振周期的减小而增大。当非耦联平动自振周期较大时,地震延性需求的均值的对数与规一化屈服强度的对数近似成线性关系。平扭耦联效应可以明显增大地震延性需求的变异性,当非耦联平动自振周期和规一化屈服强度较小时尤为明显。
A new lateral-torsional coupling Bouc-Wen model for inelastic seismic dynamic response analysis of plan-asymmetric structure under bidirectional horizontal excitations was developed considering the strength degradation,stiffness deterioration and pinching effect.In this model,the circular yield surface is adopted to describe the coupling effect between biaxial normalized lateral restoring forces,while the pyramidal or spherical yield surface is adopted to consider the coupling effect between lateral and torsional restoring forces.The influence of lateral-torsional coupling on the statistical characteristic of seismic ductility demand of plan-asymmetric structure was investigated using 69 earthquake records.Analysis results show that the spherical yield surface is better than the pyramidal yield surface to describe the lateral-torsional coupling effect.The mean value of seismic ductility demands increases with the decrease of the normalized yield strength and the uncoupled lateral vibration period.The relation between the logarithms of the seismic ductility demand and the normalized yield strength is almost linear,when the uncoupled lateral vibration period is long.The lateral-torsional coupling effect can amplify the variation of the seismic ductility demands obviously,especially when the normalized yield strength is small and the uncoupled lateral vibration period is short.
引文
[1]王墩,吕西林.平面不规则结构非弹性扭转地震反应研究进展[J].地震工程与工程振动,2010,30(2):51-58.
    [2]Lucchini A,Monti G,Kunnath S.Seismic behavior of single-story asymmetric-plan buildings under uniaxial excitation[J].Earthquake Engineer-ing&Structural Dynamics,2009,38(9):1053-1070.
    [3]De Stefano M,Pintucchi B.A review of research on seismic behaviour of irregular building structures since 2002[J].Bulletin of Earthquake En-gineering,2008,6(2):285-308.
    [4]Perus L,Fajfar P.On the inelastic torsional response of single-storey structures under bi-axial excitation[J].Earthquake Engineering&StructuralDynamics,2005,34(8):931-941.
    [5]Goel R K,Chopra A K.Inelastic seismic response of one-storey,asymmetric-plan systems:Effects of system parameters and yielding[J].Earth-quake Engineering&Structural Dynamics,1991,20(3):201-222.
    [6]Ryan K L,Chopra A K.Estimation of seismic demands on isolators based on nonlinear analysis[J].Journal of Structural Engineering,2004,130(3):392-402.
    [7]Ryan K L,Chopra A K Estimating the seismic displacement of friction pendulum isolators based on non-linear response history analysis[J].Earth-quake Engineering&Structural Dynamics,2004,33(3):359-373.
    [8]Marusic D,Fajfar P.On the inelastic seismic response of asymmetric buildings under bi-axial excitation[J].Earthquake Engineering&StructuralDynamics,2005,34(8):943-963.
    [9]Dutta S C.Effect of strength deterioration on inelastic seismic torsional behaviour of asymmetric RC buildings[J].Building and Environment,2001,36(10):1109-1118.
    [10]Syamal P K,Pekau O A.Dynamic response of bilinear asymmetric structures[J].Earthquake Engineering&Structural Dynamics,1985,13(4):527-541.
    [11]Goel R K,Chopra A K.Inelastic seismic response of one-story,asymmetric-plan systems-Effects of stiffness and strength distribution[J].Earth-quake Engineering&Structural Dynamics,1990,19(7):949-970.
    [12]Ozaki M,Azuhata T,Takahashi T,et al.Inelastic deformation of one-story asymmetric-plan systems subjected to srong earthquake ground motions[J].Earthquake Spectra,1994,10(4):777-790.
    [13]de la Llera J C,Chopra A K.Understanding the inelastic seismic behaviour of asymmetric-plan buildings[J].Earthquake Engineering&Struc-tural Dynamics,1995,24(4):549-572.
    [14]Koliopulos P K,Chandler A M.Stochastic linearization of inelastic seismic torsional response-formulation and case studies[J].EngineeringStructures,1995,17(7):494-504.
    [15]潘东辉,蔡健.建筑结构在不同方向水平地震作用下的扭转振动效应[J].工程抗震与加固改造,2004,6:9-14.
    [16]刘畅,邹银生.偏心结构在双向地震作用下扭转反应之影响因素[J].防灾减灾工程学报,2007,27(1):23-28.
    [17]Goda K,Hong H P,Lee C S.Probabilistic characteristics of seismic ductility demand of SDOF systems with Bouc-Wen hysteretic behavior[J].Journal of Earthquake Engineering,2009,13(5):600-622.
    [18]Wen Y K,Eliopoulos D.Method for nonstationary random vibration of inelastic structures[J].Probabilistic Engineering Mechanics,1994,9(1-2):115-123.
    [19]Myslimaj B,Tso W K.Desirable strength distribution for asymmetric structures with strength-stiffness dependent elements[J].Journal of Earth-quake Engineering,2004,8(2):231-248.
    [20]Tso W K,Myslimaj B.A yield displacement distribution-based approach for strength assignment to lateral force-resisting elements havingstrength dependent stiffness[J].Earthquake Engineering&Structural Dynamics,2003,32(15):2319-2351.
    [21]Riddell R,Santa-Maria H.Inelastic response of one-storey asymmetric plan systems subjected to bidirectional earthquake motions[J].Earth-quake Engineering&Structural Dynamics,1999,28(3):273-285.
    [22]Lee C S,Hong H P.Statistics of inelastic responses of hysteretic systems under bidirectional seismic excitations[J].Engineering Structures,2010,32(8):2074-2086.
    [23]Ajavakom N,Ng C H,Ma F.Performance of nonlinear degrading structures:Identification,validation,and prediction[J].Computers&Struc-tures,2008,86(7-8):652-662.
    [24]Shampine L F,Reichelt M W.The MATLAB ODE suite[J].SIAM Journal of Scientific Computing,1997,18(1):1-22.
    [25]Ryan K L,Chopra A K.Estimation of seismic demands on isolators in asymmetric buildings using non-linear analysis[J].Earthquake Engineer-ing&Structural Dynamics,2004,33(3):395-418.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心