超高压变质岩物理性质的相关性对建立结晶岩区地球物理解释标尺的意义
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
大陆科学钻探为认识深部地壳的结构、组成、力学性质和物理状态提供了重要的基础数据。岩石物理性质的测量对于原位测井资料的校正和地表地球物理测量的解释具有重要意义,岩石物理性质和岩石学研究相结合,还能为岩石的变质作用以及变质过程中化学成分的迁移提供必要的约束。本文主要对CCSD100-3100m的综合岩石物理资料进行了相关性调查和聚类分析,并得出如下结论:(1)岩石物理性质中的地震波速度、密度、热导率之间具有强相关性,他们都受岩石中主要矿物的组成和含量所控制;(2)岩石的电阻率和磁化率受金属氧化物含量的控制,与岩性有相关性;孔隙度、渗透率与岩性没有相关性;(3)利用岩石的物理性质可以反演不同的岩性,其中地震波速度、密度和热导率对榴辉岩和片麻岩大类具有很好的分类效果,而结合磁化率和电阻率则能更好的区分出超基性岩、正片麻岩和副片麻岩。上述结论对综合地球物理解释中物理参数的选取和结晶岩区地球物理解释标尺的建立具有重要的意义。
Scientific Drilling has become a critical tool to provide data essential to understand the structure, composition, mechanical behavior and physical state of the deeper curst. Petrophysical studies are necessary for the calibration of borehole logging results and for the interpretation of surface geophysical investigations. Such studies, in combination with petrological investigations, are also required for the understanding of chemical alteration and metamorphism. Correlation investigation and cluster analysis are preformed on petrophysical properties of ultra-high pressure rocks from 100 - 3100m of CCSD main hole, and the conclusions are given as following: (1) the strong correlations among seismic wave, density and thermal conductivity are controlled by the mineral assemblage and proportion in the rocks; (2) electrical resistivity and susceptibility are controlled by the metal oxide in the rocks and associated with the lithology of the rocks, but the porosity and permeability have no correlation with lithology; (3) the lithology of the rocks can be classified according to their petrophysical properties. Eclogite and gneiss can be distinguished according to the seismic velocity, density and thermal conductivity, but the ultra-mafic tocks, prargneiss and orthgneiss can be well recognized if the susceptibility and resistivity are added to the analysis parameters. These conclusions are of great important to the parameter selection in geophysical interpretation and also have the great significance on establishing the geophysical interpretation standards for crystalline rocks.
引文
Bayuk I O, Chesnokov E M. 1998. Correlation between Elastic and Transport Properties of Porous Cracked Anisotropic Media. Phys. Chem. Earth. , 23 (3): 361 -366
    Berckheemer A. Rauen A, Winter H, et al. 1997. Petrophysical properties of the 9-km deep crustal section at KTB. J. Geophys. Res. 102(B8):18337-18362
    Christensen N L. 1989. Reflectivity and seismic, properties of the deep continental crust. J. Geophys. Res. 94:17795-17804
    Clauser C, Huenges E. 1995. Thermal conductivity of rocks and minerals. In Ahrens T. J. (ed.). Rock physics and phase relations: A handbook of physical constants, Washington DC, AGU Publisher, 3:105-126
    Correia A, Ramalhob E C. 1999. One-dimensional thermal models constrained by seismic velocities and surface radiogenic heat production for two main geotectonic units in southern Portugal. Tectonophysics, 306: 261 -268
    Gao Shan, Jin Zhemin, Jin Shuyan, et al. 1997. Preliminary study on seismic velocities and density of ultrahigh-pressure eclogite from Dabie shan: Implication for composition of deep crust and Moho characsters. Chinese Science Bulletin (in Chinese). 42 (8) : 862 - 866
    Holl A, Althaus E, Lempp C. 1997. The petrophysical behavior of crustal rocks under the influence of fluids. Tectonophysics. 275 : 253 -260
    Huenges E, Lauterjung J, B cker C. et al. 1997. Seismic velocity, density, thermal conductivity, and heat production of cores from the KTB pilot hole. Geophys. Res. Lett. , 24(3) : 345 -348
    Huenges E. 1997. Factors controlling the variances of seismic velocity, density, thermal conductivity, and heat production of cores from the KTB pilot hole. Geophys. Res. Lett. , 24(3) : 341 -344
    JIN ZhenMin, OU XinGong, XU HaiJun, et al. 2004. Elastic wave velocities of the 2000m depth at Chinese Continental Scientific Drilling: Constrains on deep seismic reflection. Acta Petrologica Sinica, 20(1):81 -96
    Jones K A, Warner M R, Morgan R P. 1996. Coincident normal-incidence and wide-angle reflection from the Moho: evidence for crustal seismic anisotropy. Tectonophysics
    Kern H, Shan Gao, Zhenmin Jin, et al. 1999. Petrophysical studies on rocks from the Dabie ultrahigh-pressure (UHP) metamorphic belt, Central China: implications for the composition and delamination of the lower crust. Tectonophysics. 301 : 191 -215
    Kern H, Zhenmin Jin, Shao Gao, et al. 2002. Physical properties of ultrahigh-pressure metamorphic rocks from Sulu terrain, eastern China:implications for the seismis structune of the Donghai (CCSD) drilling site. Tectonophysics. 354:315-330
    Knigh R, Nolen-Hoeksema R. 1990. A laboratory study of the dependence elastic wave velocities on pore scale fluid distribution. Geophys. Res. Lett. 17(10): 1529-1532
    Lee, T-C. 1989. Thermal conductivity measured with a line source between two dissimilar media equals their mean conductivity. J. Geophys. Res. , 94(B9) : 12,443 -12,447
    Ogilvie S R, Glover P W J. 2001. The petrophysical properties of deformation bands in relation to their microstructure. Earth and Planetary Science Letters, 193:129 -142
    OU XinGong, JIN ZhenMin, WANG Lu, et al. 2004. Thermal conductivity and its anisotropy of rocks from the depth of 100 -2000m mainhole of Chinese Continental Scientific Drilling: revelations to the study on thermal structure of subduction zone. Aeta Petrologica Sinica, 20(1) :109 - 118
    Popp T, Kern H. 2000. Monitoring the State of Microfracturing in Rock Salt During Deformation by Combined Measurements of Permeability and P- and S- Wave Velocities. Phys. Chem. Earth. , 25 (2) : 149 -154
    Popp T, Kern H. 1998. Ultrasonic Wave Velocities, Gas Permeability and Porosity in Natural and Granular Rock Salt. Phys. Chem. Earth. , 23 (3):373 -378
    Prinow, D. F. C, and Sass J. H, 1995. Determination of thermal conductivity for deep boreholes, J. Geophs. Res. , 100, 9981 - 9994
    Rauen A, Winter H. 1995, Petrophysical properties. In: Emmermann R. et al ( Ed), KTB Report 95-2, Hannover, D24 - D28
    Rauen, A. , and Soffel H C. 1995. Determination of electrical resistivity, its anisotropy and heterogeneity on drill cores: a new method, Geophys. Prospect. , 43, 283 -298
    Seipold U, Mueller H-J, Tuisku P. 1998. Principle Differences in the Pressure Dependence of Thermal and Elastic Properties of Crystalline Rocks. Phys. Chem. Earth. , 23(3) : 357 -360
    Seipold U, Raab S. 2000. A Method to Measure Thermal Conductivity and Thermal Diffusivity under Pore and Confining Pressure. Phys. Chem. Earth. , 25 (2):183 - 187
    Seipold U. 1998. Temperature dependence of thermal transport properties of crystalline rocks:a general law. Tectonophysics, 291 (14) : 161 -171
    Shi Ge, Shen Wenlue, Yang Dongquan. 2003. The relationship of elastic wave velocity with saturation and fluid distribution in pore space. Chinese J. Geophys ( in Chinese with English abstract). 46 (1) : 138-142
    Shi Xingjue, Xu Guoming, 1995. Experimental study on the effecl of water-saturation on compressioual and shear wave velocity and attenuation. Chinese J. Geophys ( in Chinese with English abstract). 38 (supplement) : 281 -287
    Tukkonen 1 T, Peltoniemi S. 1998. Relationships between Thermal and other Petrophysical Properties of Rocks in Finland. Phys. Chem. Earth. , 23(3) : 341 -349
    Warner M. 1990. Absolute reflection coefficients from deep seismic reflections. Tectonophysics. 173:15-23
    XU ZhiQin. 2004. The scientific goals and investigation progresses of the Chinese Continental Scientific Drilling Projeel. Acta Petrologica Sinica, 20(1):1 -8
    Yang Wencai, Cheng Zhenyan, Chen Guojiu. 1999. Geophysical investigations of northern Sulu UHPM belt (1) : Deep seismic reflection. Chinese J. Geophys (in Chinese with English abstract). 42(1) : 41 -52
    Yang Wencai, Zhang Chuhe, Zhu Guangmin. 2002. Calibration of seismic reflectors in Chinese Continental Drilling area (in Chinese with English abstract). 45(3) : 370 -384
    Yu Qingfan, Yao Changli, Meng Xiaohong. 2002. Petrophysical properties at site of continental scientific Drilling, Northern Jianshu province. Chinese J. Geophys (in Chinese with English abstract). 45(1): 93-100
    Zamora M, Vo-Thanh D, Bienfait G. et al. 1993. An empirical relationship between thermal conductivity and elastic wave velocities in sandstone. Geophys. Res. Lett. , 20(16) : 1679-1682
    Zhao Zhidan, Xie Hongsheng, Zhou Wenge. 2001. Density and seismic velocity of eclogite from Dable shan and implications for cycle of crust-mantle. Bulletin of Mineralogy, Petrolog and Geochemistry (in Chinese with English abstract) . 20(1) : 52-57
    高山,金振民,Kern H等.1997.大别山超高压榴辉岩高温高压下地 震波速和密度的初步研究——对造山带地壳深部组成和莫霍性 质的启示.科学通报,42(8):862-866
    金振民,欧新功,徐海军等.2004.中国大陆科学钻探主孔100- 2000m岩石弹性波速度:对地震深反射的约束,岩石学报.20 (1):81-96
    欧新功,金振民,王璐等.2004.中国大陆科学钻探主孔100-2000m 岩石热导率及其各向异性:对研究俯冲带热结构的启示,岩石学 报.20(1):109-118
    施行觉,徐果明.1995.含水饱和度对纵横波速度和衰减影响的实验 研究.地球物理学报,38(增刊):281-287
    史謌,沈文略,杨东全.2003.岩石弹性波速度和饱和度、孔隙流体分 布的关系.地球物理学报,46(1):138-142
    许志琴.2004.中国大陆科学钻探工程的科学目标及初步成果.岩 石学报,20(1):1-8
    杨文采,程振炎,陈国九等.1999.苏鲁超高压变质带北部地球物理 调查(I):深反射地震.地球物理学报,42(1):41-52
    杨文采,张春贺,朱光明.2002.标定大陆科学钻探孔区地震反射体. 地球物理学报,45(3):370-384
    余钦范,姚长利,孟小红.2002.苏北大陆科学钻探耙区岩石物理性 质.地球物理学报,45(1):93-100
    赵志丹,谢鸿森,周文戈.2001,大别山榴辉岩的密度和波速及其对 壳-幔循环的启示.矿物岩石地球化学通讯,20(1):52-57

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心