某高层结构风振与地震反应控制设计方案的对比分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
针对某98.93 m高层结构自身特点设计了三种减振控制方案,即方案一将阻尼器布置在结构顶部的21层~26层;方案二将阻尼器布置在结构中部12层~14层;方案三将阻尼器布置在结构下部3层~4层,并以所模拟的脉动风荷载时程及所选地震波作为动力荷载输入,对结构进行各方案下的风振和地震反应控制对比分析。结果表明,各方案下风振与地震输入能量可得到不同程度的耗散而衰减结构的风振与地震反应。在结构的风振控制方面,方案二对结构顶层加速度和侧移的最大控制效果分别达43%和44%,其总体控制效果稍优于方案一,显著优于方案三;在结构的地震控制方面,方案一与方案二对结构顶层侧移的控制效果相当,均在10%左右,方案三控制效果最小。对同时考虑风振与地震反应的高层结构控制设计,建议尽量将减振装置设置在结构的中上部楼层,以最小的投入达到最大的控制效果。
Vibration control of a 98.93m high-rise building under wind and earthquake was studied here.Three vibration control schemes with nonlinear viscous dampers were proposed to control its structural dynamic responses under wind and earthquake excitations according to natural characteristics of the building.Dampers were installed in stories from 21st to 26th in scheme 1,from 12th to 14th in scheme 2 and from 3rd to 4th in scheme 3.The dynamic responses of the structure with the proposed control schemes under wind and earthquake excitations were investigated and their vibration control effects were analyzed comparatively.The study results showed that dynamic responses induced by wind and earthquake excitations can be controlled effectively with the proposed schemes;control effect of scheme 2 is superior to both scheme 1 and scheme 3 and scheme 3 is the worst under wind and earthquake;the top story acceleration and displacement can be reduced by 43% and 44%,respectively,with scheme 2 for wind-induced vibration;the top story displacement can be reduced by almost 10% with scheme 1 or scheme 2 for earthquake control;dampers are suggested to be installed in middle and upper stories so as to achieve maximum control effect for cases of controlling structural responses under both wind and earthquake excitations.
引文
[1]Yeung N.Viscous-damping walls for controlling wind-inducedvibrations in buildinds[D].Hong Kong:The University ofHong Kong,2000.
    [2]Chang K C,Qu W L.Unified dynamic absorber design formulasfor wind-induced vibration control of tall buildings[J].TheStructural Design of Tall Buildings,1988.
    [3]杨国华,李爱群,等.工程结构粘滞流体阻尼器的减振机制与控振分析[J].东南大学学报(自然科学版),2001,31(1):57-61.
    [4]周云,刘季.粘弹性阻尼器结构的抗震设计方法[J].世界地震工程,1996,(1):23-31.
    [5]Qu W L,Chang C C.Practical design method of controllingwind induced vibration responses of tall buildingwith passivedynamic absorbers[D].In:Proceedings of 2 WCSC,Kyoto,JAPAN,1998.
    [6]项海帆,瞿伟廉.高层建筑风振控制基于规范的实用设计方法[J].振动工程学报,1999,12(2):151-156.
    [7]Xu Y L,kwok K C S,Samali B.Control of wind induced tallbuilding vibration by tuned mass dampers[J].Journal of WindEngineering and IndustryAerodynamics,1992,40:1-32.
    [8]汪大洋,周云.基于瑞雷阻尼算法的高层结构风振控制优化分析[J].中国科技论文在线,2009,(7):498-506.
    [9]瞿伟廉,程懋,等.设置粘弹性阻尼器钢结构高层建筑抗震抗风设计的实用方法[J].建筑结构学报,1998,19(3):42-49.
    [10]唐意,顾明.某超高层建筑TMD风振控制分析[J].振动与冲击,2006,25(2):16-19.
    [11]Psakhie S G,Yu Smolin A,Tatarintsev E M,et al.The effectof elastic energy accumulation and the possibility ofcontrolling the fracture process in complex structures[J]Technical Physics Letters,2000,26(1):51-53.
    [12]《建筑结构荷载规范》(GB5009-2001)[S].北京:中国建筑工业出版社,2002.
    [13]《广东省实施〈高层建筑混凝土结构技术规程〉(JGJ3-2002)补充规定》[S].北京:中国建筑工业出版社,2005.
    [14]《建筑抗震设计规范》(GB50011-2001)[S].北京:中国建筑工业出版社,2002.
    [15]周云.金属耗能减震结构设计[M].武汉:武汉理工大学出版社,2006.
    [16]周云.粘滞阻尼减震结构设计[M].武汉:武汉理工大学出版社,2006.
    [17]周云.粘弹性阻尼减震结构设计[M].武汉:武汉理工大学出版社,2006.
    [18]北京金土木软件有限公司,等编,ETABS中文版使用指南[M].北京:中国建筑工业出版社,2004.
    [19]Li Y,Kareem A.Simulation of multivariate random processes:hybrid DFT and digital filtering approach[J].Journal ofEngineering Mechanics,ASCE,1993,119(5):1078-1098.
    [20]Lannuzzi A,Spinelli P.Artificial wind generation andstructural response[J].Journal of Structural Engineering.ASCE,1987,113(12).
    [21]周云,汪大洋,邓雪松,等.某超高层结构三种风振控制方法的对比研究[J].振动与冲击,2009,28(2):16-21.
    [22]杨溥,李英民,赖明.结构时程分析法输入地震波的选择控制指标[J].土木工程学报.2000,33(6):33-37.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心