塑性铰区埋入高阻尼隔震橡胶后RC柱抗震性能的试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
以开发塑性铰区埋入隔振橡胶层的新型RC柱为目的,通过橡胶层提高RC柱的变形能力、增强延性和耗能能力,改善传统RC柱的抗震性能;探讨埋入不同厚度橡胶层RC柱的承载力-变形特性、破坏模式和抗震性能。试验及分析结果表明:反复水平荷载作用下普通RC柱的塑性铰区出现较多的水平裂缝和竖向裂缝,且裂缝宽度较大,塑性铰区混凝土的损伤和破坏均较严重,RC柱的荷载-位移曲线呈反"S"的捏拢形;塑性铰区埋入橡胶层的RC柱的初始刚度与RC柱基本相同,水平承载力有所降低,但是,橡胶层能够显著提高RC柱的变形性能,裂缝稀疏且宽度明显变小,即塑性铰区混凝土的损伤降低,荷载-位移滞回曲线呈梭形,且没有明显的下降段,比RC柱具有更好的耗能能力。在水平荷载作用下,塑性铰区埋入橡胶层RC柱的水平承载力上升速度与埋入的橡胶层厚度有关,埋入的橡胶层越厚,水平承载力上升越慢。
This paper aimed at developing a new type of column with a rubber layer built-in its plastic hinge zone, in which the deformation capacity, ductility and energy dissipation are increased and improved. The tests and the analyses of results showed that concrete in the plastic hinge zone of RC column was seriously damaged under horizontal cyclic loading and a large amount of horizontal cracks and vertical cracks with large width appeared and extended in the hinge zone of RC column, and the hysteria curves of load-deformation is reverse S shape. When the rubber layer was built in the hinge zone of RC columns, the ultimate strength of RC column slightly decreased, but the deformation property of RC column can be improved greatly by rubber layer, with decreasing amount and width of cracks, which implies that the damage and failure of concrete are reduced. The shape of hysteria curves of load-deformation became plump shuttle for RC columns with rubber layer built in, and had better energy-dissipating capacities. With the increase of the thickness of rubber layer, the loading capacity increased more slowly.
引文
[1]GB50011-2001.建筑抗震设计规范[S].北京:中国建筑工业出版社,2002.GB50011-2001.Load code for design of building structures[S].Beijing:China Architecture and Building Press,2002.(in Chinese)
    [2]王亚勇,白雪霜.台湾921地震中钢筋混凝土结构震害特征[J].工程抗震,2001,1:3―7.Wang Yayong,Bai Xueshuang.Damage features of RC structures in the september21,1999TAIWAN earthquake[J].Earthquake Resistant Engineering,2001,1:3―7.(in Chinese)
    [3]钱稼茹,徐福江.钢筋混凝土柱基于位移的变形能力设计方法[J].建筑结构,2007,37(12):30―32.Qian Jiaru;Xu Fujiang.Displacement-based deformation capacity design of RC columns[J].Building Structure,2007,37(12):30―32.
    [4]卓卫东,范立础.延性桥墩塑性铰区最低箍筋用量[J].土木工程学报,2002,35(5):47―51.Zhuo Weidong,Fan Lichu.Minimum quantity of confining lateral reinforcement in the potential plastic hinge regions of ductile bridge piers[J].China Civil Engineering Journal,2002,35(5):47―51.(in Chinese)
    [5]谢楠,陈英俊.铁路桥墩延性抗震设计问题[J].铁路标准设计,2001,21(3):8―10.Xie Nan,Chen Yingjun.The problems on seismic design of railway piers[J].Railway Standard Design,2001,21(3):8―10.(in Chinese)
    [6]王东升,李宏男,赵颖华.钢筋混凝土桥墩基于位移的抗震设计方法[J].土木工程学报,2006,39(10):80―86.Wang Dongsheng,Li Hongnan,Zhao Yinghua.Displacement-based seismic design method of RC bridge piers[J].China Civil Engineering Journal,2006,39(10):80―86.(in Chinese)
    [7]马宏旺,吕西林.建筑结构基于性能抗震设计的几个问题[J].同济大学学报,2002,30(12):1429―1434.Ma Hongwang,Lu Xilin.Some problems about performance-based seismic design[J].Journal of Tongji University.2002,30(12):1429―1434.
    [8]胡伟红.CFRP加固钢筋混凝土柱受剪承载力分析及抗震性能试验研究[D].北京:清华大学,2004.Hu Weihong.Experimental research on shear strehngth and seismic behavior of RC column strengthed with FRP[D].Beijing:Tsinghua University,2004.(in Chinese)
    [9]陈杰.FRP加固钢筋混凝土柱抗震性能的试验研究[D].南京:东南大学,2004.Chen Jie.Experimental research on seismic behavior of concrete column restrengthened with fiber reinforced polymer[D].Nanjing:Southeast University,2004.(in Chinese)
    [10]叶列平,陆新征,马千里.混凝土结构抗震非线性分析模型、方法及算例[J].工程力学,2006,S2:131―130.Ye Lieping,Lu Xinzheng,Ma Qianli.Nonlinear analytical models,methods and examples for concrete structures subject to earthquake loading[J].Engineering Mechanics,2006,S2:131―130.(in Chinese)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心