钢管初应力对哑铃型钢管砼拱桥承载力影响分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
钢管初应力对钢管砼拱桥承载力影响一直是工程界关注的问题。根据拱桥达到极限承载力时拱圈截面受力特点,为综合考虑钢管初应力及钢管与核心砼之间套箍效应的影响,提出综合应用了包含初应力的实体-空间梁单元和空间梁单元来计算哑铃型钢管砼拱桥承载力的新方法,并推导了相应的刚度矩阵,编制了计算程序。在此基础上,分析了不同初应力系数、不同含钢率和不同跨径等因素对哑铃型钢管砼拱桥承载力的影响规律,计算结果表明,钢管初应力使哑铃型钢管砼拱桥承载力降低,最大降低值可超过10%。为便于工程设计和施工参考,该文最后提出了考虑初应力影响时哑铃型钢管砼拱桥钢管初应力限值和承载力影响系数计算公式。
The problem of the effect on the initial stress to the bearing capacity of the concrete-filled steel tube (CFST)arch bridge are constantly concerned by bridge engineers.According to the section mechanical characteristic of an arch bridge when the ultimate capacity reached,for the comprehensive consideration of the initial stress of the steel tube and the confined effect between the steel tube and the core concrete,a new method which included both the spatial solid-beam element and the general spatial beam element with the initial stress to analyze the effect on the initial stress to the bearing capacity of the dumbbell CSFT arch bridge was introduced. Based on this method,the both element stiffness matrices were given and a computing program was developed. On basis of these,the influences of the initial stress ratio,sectional steel ratio and spans and so on were comprehensively studied.The analytical results show that the bearing capacity of dumbbell CSFT arch bridge will reduce due to the existence of the initial stress of the steel tube.The maximum reduction is large than 10%.At last, a limitation to the initial stress of the steel tube and a formula of the influence factor of the bearing capacity of the dumbbell CFST arch bridge have been put forward;these are useful for engineering design and construction.
引文
[1]陈宝春,黄福云,盛叶.钢管砼哑铃型短柱轴压试验研究[J].工程力学,2005,22(1):187―194.Chen Baochun,Huang Fuyun,Sheng Ye.Experimental study of concrete-filled steel tubular dumbbell shaped short columns under concentric loads[J].Engineering Mechanics,2005,22(1):187―194.(in Chinese)
    [2]陈宝春,肖泽荣,韦建刚.钢管砼哑铃型偏压构件试验研究[J].工程力学,2005,22(2):89―95.Chen Baochun,Xiao Zerong,Wei Jian’gang.Experimen-tal study of concrete-filled steel tubular dumbbell shaped columns under eccentric loads[J].Engineering Mechanics,2005,22(2):89―95.(in Chinese)
    [3]陈宝春,盛叶,韦建刚.钢管砼哑铃型梁受弯试验研究[J].工程力学,2005,22(4):119―125.Chen Baochun,Sheng Ye,Wei Jian’gang.Experimental study of concrete filled steel tubular dumbbell-shaped beam under bending[J].Engineering Mechanics,2005,22(4):119―125.(in Chinese)
    [4]黄福云,陈宝春.初应力对钢管砼哑铃型轴压短柱受力性能影响的试验研究[J].福州大学学报(自然科学版),2006,34(2):240―244.Huang Fuyun,Chen Baochun.Experimental research on influence of initial stress to behavior of concrete filled steel tubular dumbbell shaped stub columns under axial loads[J].Journal of Fuzhou University(Natural Science),2006,34(2):240―244.(in Chinese)
    [5]韩林海,尧国皇.钢管初应力对钢管砼压弯构件承载力的影响研究[J].土木工程学报,2004,36(4):9―18.Han Linhai,Yao Guohuang.Effect on initial stress on bearing capacity of concrete filled steel tubular beam-columns[J].China Civil Engineering Journal,2004,36(4):9―18.(in Chinese)
    [6]钟善桐.高层钢管砼结构[M].哈尔滨:黑龙江科学技术出版社,1999.Zhong Shantong.High rise concrete filled steel tubular structure[M].Harbin:Heilongjiang Science and Technology Press,1999.(in Chinese)
    [7]于洪刚,周水兴,陈强.钢管初始应力对大跨度砼拱桥稳定承载力的影响[J].长沙理工大学学报(自然科学版),2005,2(2):18―22.Yu Honggang,Zhou Shuixing,Chen Qiang.Influence of initial stress on concrete-filled steel tubular arch bridge stability and bearing capacity[J].Journal of Changsha University of Science and Technology(Natural Science),2005,2(2):18―22.(in Chinese)
    [8]于洪刚,周水兴,陈强.中山大桥钢管初始应力稳定计算分析[J].重庆交通学院学报,2006,25(1):4―7.Yu Honggang,Zhou Shuixing,Chen Qiang.The analysis of initial stress about stability and bearing capacity of Zhongshan bridge[J].Journal of Chongqing Jiaotong University,2006,25(1):4―7.(in Chinese)
    [9]谢开仲,秦荣,李秀梅.钢管砼拱桥的材料非线性地震反应分析[J].世界地震工程,2005,21(3):40―44.Xie Kaizhong,Qin Rong,Li Xiumei.Analysis of nonlinear seismic response of concrete filled steel tubular arch bridge[J].World Earthquake Engineering,2005,21(3):40―44.(in Chinese)
    [10]王小岗.钢管砼拱稳定分析的三维退化层合曲梁单元[J].计算力学学报,2001,18(3):326―330.Wang Xiaogang.Finite element analysis on stability of steel pipe-concrete arch by the degenerated3-D laminated curved beam elements[J].Chinese Journal of Computational Mechanics,2001,18(3):326―330.(in Chinese)
    [11]张建民.大跨度钢管砼拱桥承载能力与施工控制研究[D].广州:华南理工大学,2001.Zhang Jianmin.Study of bearing capacity and construction control of large span concrete filled steel tubular arch bridge[D].Guangzhou:South China of University of Technology,2001.(in Chinese)
    [12]童蔷,熊峰.钢管砼拱结构的非线性分析[J].土木工程学报,2003,36(6):66―70.Tong Qiang,Xiong Feng.Analysis for CFST arch bridges considering material and geometrical nonlinearity[J].China Civil Engineering Journal,2003,36(6):66―70.(in Chinese)
    [13]Bathe K L,Ramm E,Wilson E L.Finite element formulations for large deformation dynamic analysis[J].International Journal for Numerical Methods in Engineering,1975,9(3):353―386.
    [14]项海帆,刘光栋.拱结构的稳定与振动[M].北京:人民交通出版社,1991.Xiang Haifan,Liu Guangdong.Stability and vibration of arch structure[M].Beijing:China Communications Press,1991.(in Chinese)
    [15]GB50010-2002,砼结构设计规范[S].北京:中国建筑工业出版社,2002.GB50010-2002,Specifications for concrete structure design[S].Beijing:China Architecture and Building Press,2002.(in Chinese)
    [16]韩林海.钢管砼结构[M].北京:科学出版社,2000.Han Linhai.Concrete-filled steel tube structure[M].Beijing:Science Press,2000.(in Chinese)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心