堪察加地区现今地壳运动与变形特征研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
利用俄罗斯堪察加地区1995~2005年的 GPS 观洲数据,研究了该区现今地壳水平运动速度场特征.在球坐标系中解算了各应变率分量,分析了应变率场的空间分布特征.并与地震学和地质学研究结果进行了综合对比分析.结果表明.堪察加半岛北部的微板块边界并不明显.堪察加南部测站运动速度大于中部和北部地区.愈靠近东部板块汇聚区,测站速度越大.从东海岸到西海岸,测站水平速度存在明显的梯度衰减特征,水平运动方向与太平洋板块向西北的俯冲方向基本一致.各应变率分量具有东部海岸大于中部和西海岸、从东至西呈梯度衰减的特点.堪察加大部分地区处于 EW 和 NS 向压缩状念.局部存在拉张.面应变率结果显示绝大部分为压缩区;刚性转动结果表明大部分地区表现为顺时针转动,北部地区和南端顺时针旋转性明显.东部有效应变率明显大于西部地区,东西向梯度衰减关系明显.主压应变率明显大于主张应变率.特别是在东海岸地区.主压应变率方向与中等以上地震的主压应力轴在水平方向的投影方向基本一致.地壳变形场在空间分布上的不一致性主要与太平洋板块在堪察加半岛东南侧的俯冲深度、俯冲方位角、俯冲倾角和俯冲带的耦合强度有关.
We have collected GPS data in the period of 1995~2005 in Kamchatka,Russia to study the characteristics of present-day crustal horizontal motion velocities in this area.Strain rate components are computed in spheric coordinate system.Analyses of the spatial distribution of strain rate fields derived from GPS measurements are carried out in contrast with seismological and geological results.Results show that microplate boundaries are not clear in the north part of Kamchatka peninsula.Site velocities in southern Kamchatka peninsula are generally greater than in the middle and north of this area.The closer to the eastern subduction zone the sites are,the greater their velocities are.Horizontal velocity field obviously exhibits gradient decrease across the peninsula from east to west.Generally the horizontal motions have same direction as the Pacific plate subducting to the southeast.All strain rate components have the features of getting less in EW direction.Generally,Kamchatka peninsula is undergoing compression in terms of EW and NS strain rate components,with extension in certain local zones.Dilation rates show that almost all Kamchatka peninsula are contracting; Rigid rotation rates in most regions are clockwise,especially in north zone and southern end.Effective strain rates in eastern zone are greater than in west,and it exhibits remarking gradient decrease in EW direction.Principal compression strain rates are apparently greater than principal extension strain rate,especially in eastern zone.In general,the directions of principal compression strain rate are congruent with horizontal projection of principal compress axis derived from medium and large earthquakes. Spatial non-uniform of crustal deformation field is related to the subduction depth,orientation, dip angle and coupling strength of Pacific downthrust to the southeast of Kamchatka peninsula.
引文
[1] Gordeev E I,Gusev A A,Levin V E,et al.Preliminary analysis of deformation at the Eurasia-Pacific-North America Plate junction from GPS data.Geophys.J.Int.,2001,147:189~198
    [2] Cook D B,Fujita K,McMullen C A.Present-day interactions in Northeast Asia:North American,Eurasian,and Okhotsk Plates.J.Geodyn.,1986,6:33~51
    [3] Savostin L,Zonenshain L,Baranov B.Geology and plate tectonic of the sea of Okhotsk.Am Geophys Union.Geodynamics ser.,1983,11:189~221
    [4] Seno T,Sakurai T,Stein S.Can the Okotsk plate be discriminated from the North American plate?J.Geophys.Res.,1996,101(B5) :11305~11315
    [5] Mackey K G,Fujita K,Gunbina L V,et al.Seismicity of the Bering Strait region:Evidence for a Bering block.Geology,1997,25(11) :979~982
    [6] Apel E V,B■rgmann R,Steblov G M,et al.Independent active microplate tectonics of northeast Asia from GPS velocities and block modeling.Geophys.Res.Lett.,2006,33,L11303,doi:1029/2006GL026077
    [7] Tibaldi A.Recent surface faulting investigated in Kamchatka volcanic arc.Eos Trans.AGU,2004,85(14) :133,134,141
    [8] Arugs D F,Michael B H.Plate motion and crustal deformation estimated with geodetic data from the Global Positioning System.Geophys.Res.Lett.,1995,22 (15) :1973~1976
    [9] Beavan J,Tregoning P,Bevis M,et al.Motion and rigidity of the pacific plate and implications for plate boundary deformation.J.Geophys.Res.,2002,107(2261) ,doi:10. 1029/2001JB000282
    [10] Kahle H,Cocard M,Peter Y.et al.GPS-derived strain rate field within the boundary zones of the Eurasian,African,and Arabian plates.J.Geophys.Res.,2000,105 (B10) :23353~23370
    [11] McClusky S,Balassanian S,Barka A,et al.Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus.J.Geophys.Res.,2000,105(B3) :5695~5719
    [12] Shen Z K,L■ J,Wang M.Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau.J.Geophys.Res.,2005,110,B11409,doi:10. 1029/2004JB003421
    [13] B■rgmann R,Kogan M G,Levin V E,et al.Rapid aseismic moment release following the 5 December,1997 Kronotsk,Kamchatka,earthquake.Geophys.Res.Lett.,2001,28(7) :1331~1334
    [14] B■rgmann R,Kogan M G,Steblov G M,et al.Interseismic coupling and asperity distribution along the Kamchatka subduction zone.J.Geophys.Re.,2005,110,B07405,doi:10. 1029/2005JB003648
    [15] Gordeev E,Levin V,Kasahara,et al.GPS monitoring in Kuril-Kamchatka and Aleutian arcs junction.Eos Trans.AGU,1999,80(46) :948
    [16] Kogan M,Steblov M K.King R W,et al.Geodetic constraints on the rigidity and relative motion of Eurasia and North America.Geophys.Res.Lett.,2000,27 (14 ):2041~2044
    [17] Takashi H,Kadahara M,Kimata F,et al.Velocity field of around the Sea of Okotsk and Sea of Japan regions determined from a new continuous GPS network.Geophys.Res.Lett.,1999,26(16) :2533~2536
    [18] Sella G F,Dixon T H,Mao A.REVEL:A model for recent plate velocities from space geodesy.J.Geophys.Res.,2002,107,B4,2081 doi:10. 1029/2000JB000033
    [19] Steblov G M,Kogan M G,King R W,et al.Imprint of the North American plate in Siberia revealed by GPS.Geophys.Res.Lett.,2003,30:2041~2044
    [20] Prawirodirdjo L,Bock Y.Instantaneous global plate motion model from 12 years of continuous GPS observations.J.Geophys.Re.,2004,109,B08405,doi=10. 1029/2003JB002944
    [21] Mao A,Harrson C,Dixon T H.Noise in GPS coordinates times series.J.Geophys.Res.,1999,104:2797~2816
    [22] Argus D F,Gordon R G.Tests of the rigid-plate hypothesis and bounds on intraplate deformation using geodetic data from very long baseline interferometry.J.Geophys.Res.,1996,101:13555~13572
    [23] Larson K M,Freymueller J T,Philipsen S.Global plate velocities from Global Positioning System.J.Geophys.Res.,1997,102:9961~9981
    [24] Geist E L,Scholl D W.Large-scale deformation related to the collision of the Aleutian are with Kamchatka.Tectonics,1994,13:538~560
    [25] Riegel S,Fujita K.Extrusion tectonics of the Okhotsk plate,Northeast Asia.Geophys.Res.Lett.,1993,20(7) :607~610
    [26] England P,Molnar P.Late Quaternary to decadal velocity fields in Asia.J.Geophys.Res.,2005,110,B12401,doi:10. 1029/2004JB003541
    [27] Wessel P,Bercovici D.Interpolation with splines in tension:A Green's function approach.Mathematical Geology,1998,30:77~93
    [28] Gan W,Prescott W H.Crustal deformation rates in central and eastern U.S.inferred from GPS.Geophys.Res.Lett.,2001,28(19) :3733~3736
    [29] Jin S,Park P H.Strain accumulation in South Korea inferred from GPS measurements.Earth Planets Space,2006,58:529~534
    [30] 孟国杰,申旭辉,伍吉仓等.GPS地壳形变监测网应变解算方法与程序设计.大地测量与地球动力学,2006. 26(2) :70~74 Meng G J,Shen X H,Wu J C,et al.Strain computation methods of GPS network in crustal deformation monitoring and program design.Journal of Geodesy and Geodynamics(in Chinese),2006,26(2) :70~74
    [31] 石耀霖.朱守彪.用GPS位移资料计算应变方法的讨论.大地测量与地球动力学,2006. 26(1) :1~8 Shi Y L,Zhu S B.Discussion on methods of calculating strain with GPS displacement data.Journal of Geodesy and Geodynamics(in Chinese),2006,26(1) :1~7
    [32] Savage J C,Gan W,Svarc J L.Strain accumulation and rotation in the Eastern California Shear Zone.J.Geophys.Res.,2001,106(B10) :21995~22007
    [33] Kreemer C,Holt W E,Haines A J.An integrated global model of present-day plate motions and plate boundary deformation.Geophys.J.Int.,2003,154:8~34
    [34] Calais E.Dong L.Wang M,et al.Continental deformation in Asia from a combined GPS solution.Geophys.Res.Lett.,2006,33,L24319,doi:10. 1029/2006GL028433
    [35] 伍吉仓,邓康伟,陈永奇.三角形形状因子对地壳形变计算精度的影响.大地测量与地球动力学,2003,23(3) :26~30 Wu J C.Deng K W,Chen Y Q.Effect of triangle shape factor on precision of crustal deformation calculated.Journal of Geodesy and Geodynamics(in Chinese),2003,23(3) :26~30
    [36] 李延兴,张静华,何建坤等.由空间大地测量得到的太平洋板块现今构造运动与板内形变应变场.地球物理学报.2007,50(2) :437~447 Li Y X,Zhang J H,He J K,et al.Current-day tectonic motionandintraplatedeformation-strainfieldobtainedfrom space geodesy in the Pacific Plate.Chinese J.Geophys.(in Chinese),2007,50(2) :437~453
    [37] Kreemer C,Haines J,Holt W E,et al.On the determination of a global strain rate model.Earth Planets Space,2000,52:765~770
    [38] Kozhrin A I.Active faulting at the Eurasian,North American and Pacific plates junction.Tectonophysics,2004,380:273~285
    [39] Demets C.A test of present-day plate geometries for northeast Asia and Japan.J.Geophys.Res.,1992,97(B12) :17627~17635
    [40] Bird P.An updated digital model of plate boundaries.Geochemistry Geophysics Geosystems,2003,4(3) :1~52
    [41] Gorbatov A,Kostoglodov V,Suarez G.Seismicity and structure of the Kamchatka subduction zone.J.Geophys.Res.,1997,102(B8) :17883~17898
    [42] Park J,Vadim L,Mark B,et al.A dangling slab,amplified arc volcanism,mantle flow and seismic anisotropy in the Kamchatka plate corner.In:Stein S,et al.eds.Global Plate Boundary,Geodynam,Series.Am.Geophys.Union,2002,30:295~324
    [43] Gordeev E,Kasahara M,Eichelberger J.Return to Petropavlovsk-Kamchatsky:Subduction in the Far North.Eos Trans.AGU,2004,85(44) :452~453

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心