用户名: 密码: 验证码:
Landslide susceptibility: a statistically-based assessment on a depositional pyroclastic ramp
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Landslide susceptibility: a statistically-based assessment on a depositional pyroclastic ramp
  • 作者:Franny ; G.MURILLO-GARCíA ; Stefan ; STEGER ; Irasema ; ALCáNTARA-AYALA
  • 英文作者:Franny G. MURILLO-GARCíA;Stefan STEGER;Irasema ALCáNTARA-AYALA;Institute of Geography,National Autonomous University of Mexico (UNAM);Institute for Earth Observation,Eurac Research;
  • 英文关键词:Landslide susceptibility;;Pyroclastic ramp;;Logistic regression;;Generalized Additive Model;;Support Vector Machine;;Cross validation
  • 中文刊名:Journal of Mountain Science
  • 英文刊名:Journal of Mountain Science 山地科学学报(英文版)
  • 机构:Institute of Geography,National Autonomous University of Mexico (UNAM);Institute for Earth Observation,Eurac Research;
  • 出版日期:2019-03-13
  • 出版单位:Journal of Mountain Science
  • 年:2019
  • 期:03
  • 基金:the financial support provided by CONACyT and DGAPA-UNAM PAPIIT through the Research Projects 156242 and IN300818, respectively;; CONACyT for granting a PhD scholarship and to Federica Fiorucci from CNR-IRPI Perugia, Italy, for supporting the generation of the landslide inventory
  • 语种:英文;
  • 页:78-97
  • 页数:20
  • CN:51-1668/P
  • ISSN:1672-6316
  • 分类号:P642.22
摘要
This study aimed to produce a high-quality landslide susceptibility map for Teziutlán municipality, a landslide-prone region in Mexico, which is characterised by a depositional pyroclastic ramp. The heterogeneous quality of available topographic information(i.e. higher resolution digital elevation model only for a sub-region) encouraged to confront modelling results based on two different study area delineations and two raster resolutions. Input data was based on the larger modelling region L15(163 km2) and smaller S(70 km2; located inside L15) with an associated raster cell size of 15 m(region L15 and S15) and 5 m(region S5). The resulting three data sets(L15, S15 and S5) were included into three differently flexible modelling techniques(Generalized Linear Model-GLM, General Additive Model-GAM, Support Vector Machine-SVM) to produce nine landslide susceptibility models. Preceding variable selection was performed heuristically and supported by an exploratory data analysis. The final models were based on the explanatory variables slope angle, slope aspect, lithology, relative slope position, elevation, convergence index, distance to streams, distance to springs and topographic wetness index. The ability of the models to classify independent test data was elaborated using a k-fold cross validation procedure and the AUROC(Area Under the Receiver Operating Characteristic) metric. In general, all produced landslide susceptibility maps depicted the hillslopes of the ravines, which cut the pyroclastic ramp, as prone to landsliding. The modelling results showed that predictive performances(i.e. AUROC values) slightly increased with an increasing flexibility of the applied modelling technique. Thus, SVM performed best, while the GAM outperformed the GLM. This tendency was most distinctive when modelling with the largest landslide sample size(i.e. data set L15; n = 662 landslides). Non-linear classifiers(GAMs, SVMs) performed slightly better when trained on the basis of lower raster resolution(data set S15) compared to the 5 m counterparts(data set S5). Highest predictive performance was obtained for the model based on data set L15 and the SVM classifier(median AUROC: 0.82). However, SVMs also indicated the highest degree of model overfitting. This study indicates that the decision to delineate a study area, the selection of a raster resolution as well as the chosen classification technique can affect varying aspects of subsequent modelling results. The results do not support the assumption that a higher raster resolution(i.e. a more detailed digital representation of the terrain) inevitably leads to better performing or geomorphically more plausible landslide susceptibility maps.
        This study aimed to produce a high-quality landslide susceptibility map for Teziutlán municipality, a landslide-prone region in Mexico, which is characterised by a depositional pyroclastic ramp. The heterogeneous quality of available topographic information(i.e. higher resolution digital elevation model only for a sub-region) encouraged to confront modelling results based on two different study area delineations and two raster resolutions. Input data was based on the larger modelling region L15(163 km2) and smaller S(70 km2; located inside L15) with an associated raster cell size of 15 m(region L15 and S15) and 5 m(region S5). The resulting three data sets(L15, S15 and S5) were included into three differently flexible modelling techniques(Generalized Linear Model-GLM, General Additive Model-GAM, Support Vector Machine-SVM) to produce nine landslide susceptibility models. Preceding variable selection was performed heuristically and supported by an exploratory data analysis. The final models were based on the explanatory variables slope angle, slope aspect, lithology, relative slope position, elevation, convergence index, distance to streams, distance to springs and topographic wetness index. The ability of the models to classify independent test data was elaborated using a k-fold cross validation procedure and the AUROC(Area Under the Receiver Operating Characteristic) metric. In general, all produced landslide susceptibility maps depicted the hillslopes of the ravines, which cut the pyroclastic ramp, as prone to landsliding. The modelling results showed that predictive performances(i.e. AUROC values) slightly increased with an increasing flexibility of the applied modelling technique. Thus, SVM performed best, while the GAM outperformed the GLM. This tendency was most distinctive when modelling with the largest landslide sample size(i.e. data set L15; n = 662 landslides). Non-linear classifiers(GAMs, SVMs) performed slightly better when trained on the basis of lower raster resolution(data set S15) compared to the 5 m counterparts(data set S5). Highest predictive performance was obtained for the model based on data set L15 and the SVM classifier(median AUROC: 0.82). However, SVMs also indicated the highest degree of model overfitting. This study indicates that the decision to delineate a study area, the selection of a raster resolution as well as the chosen classification technique can affect varying aspects of subsequent modelling results. The results do not support the assumption that a higher raster resolution(i.e. a more detailed digital representation of the terrain) inevitably leads to better performing or geomorphically more plausible landslide susceptibility maps.
引文
Akgün A,Bulut F(2007)GIS-based landslide susceptibility for Arsin-Yomra(Trabzon,North Turkey)region.Environmental Geology 51:1377-1387.https://doi.org/10.1007/s00254-006-0435-6
    Althuwaynee OF,Pradhan B,Park HJ,Lee JH(2014)A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping.Catena 114:21-36.https://doi.org/10.1016/j.catena.2013.10.011
    Ardizzone F,Cardinali M,Carrara A,et al.(2002)Impact of mapping errors on the reliability of landslide hazard maps.Natural Hazards and Earth System Science 2:3-14.https://doi.org/10.5194/nhess-2-3-2002.
    Atkinson PM,Massari R(1998)Generalised linear modelling of susceptibility to landsliding in the central Apennines,Italy.Computers&Geosciences 24(4):373-385.https://doi.org/10.1016/S0098-3004(97)00117-9
    Ayalew L,Yamagishi H,Ugawa N(2004)Landslide susceptibility mapping using GIS-based weighted linear combination,the case in Tsugawa area of Agano River,Niigata Prefecture,Japan.Landslides 1:73-81.https://doi.org/10.1007/s10346-003-0006-9
    Beven KJ,Kirkby MJ(1979)A physically based,variable contributing area model of basin hydrology.Hydrology Science Bulletin 24:43-69.
    Bischl B,Lang M,Kotthoff L,et al.(2016)mlr:Machine Learning in R.R package version 2.9.https://CRAN.R-project.org/package=mlr
    Brabb EE(1984)Innovative approaches to landslide hazard mapping.Proceedings 4th International Symposium on Landslides,Toronto 1:307-324.
    Brenning A(2005)Spatial prediction models for landslide hazards:review,comparison and evaluation.Natural Hazards and Earth System Science 5:853-862.https://doi.org/10.5194/nhess-5-853-2005
    Brenning A(2008)Statistical geocomputing combining R and SAGA:the example of landslide susceptibility analysis with generalized additive models.In:B?hner J,Blaschke T,Montanarella L(eds.),SAGA-Seconds Out(=Hamburger Beitr?ge zur Physischen Geographie und Landschafts?kologie,19).pp 23-32.
    Brenning A(2012)Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing:the Rpackage'sperrorest'.IEEE International Symposium on Geoscience and Remote Sensing IGARSS.https://ieeexplore.ieee.org/document/6352393
    Capra L,Lugo-Hubp J,Borselli L(2003)Mass movements in tropical volcanic terrains:the case of Teziutlán(Mexico).Engineering Geology 69:359-379.https://doi.org/10.1016/S0013-7952(03)00071-1
    Cardinali M,Reichenbach P,Guzzetti F,et al.(2002)Ageomorphological approach to estimate landslide hazard and risk in urban and rural areas in Umbria,central Italy.Natural Hazards and Earth System Science 2(1-2):57-72.https://www.nat-hazards-earth-systsci.net/2/57/2002/nhess-2-57-2002.pdf
    Cascini L(2008)Applicability of landslide susceptibility and hazard zoning at different scales.Engineering Geology 102:164-177.https://doi.org/10.1016/j.enggeo.2008.03.016
    Catani F,Lagomarsino D,Segoni S,Tofani V(2013)Landslide susceptibility estimation by random forests technique:sensitivity and scaling issues.Natural Hazards and Earth System Science 13:2815-2831.https://doi.org/10.5194/nhess-13-2815-2013
    Chauhan S,Sharma M,Arora MK(2010)Landslide susceptibility zonation of the Chamoli region,Garhwal Himalayas,using logistic regression model.Landslides 7:411-423.https://doi.org/10.1007/s10346-010-0202-3
    Che VB,Kervyn M,Suh CE,et al.(2012)Landslide susceptibility assessment in Limbe(SW Cameroon):A field calibrated seed cell and information value method.Catena 92:83-98.https://doi.org/10.1016/j.catena.2011.11.014
    Chen CH,Ke CC,Huang CL(2009)A back-propagation network for the assessment of susceptibility to rock slope failure in the eastern portion of the Southern Cross-Island Highway in Taiwan.Environmental Geology 57:723-733.https://doi.org/10.1007/s00254-008-1350-9
    Chung CJF,Fabbri AG(2003)Validation of spatial prediction models for landslide hazard mapping.Natural Hazards 30(3):451-472.https://doi.org/10.1023/B:NHAZ.0000007172.62651.2b
    Chung CF,Fabbri A,Van Westen CJ(1995)Multivariate regression analysis for landslide hazard zonation.In:Carrara A,Guzzetti F(eds.),Geographical Information Systems in Assessing Natural Hazards 107-133.
    Conforti M,Pascale S,Robustelli G,Sdao F(2014)Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment(northern Calabria,Italy).Catena 113:236-250.https://doi.org/10.1016/j.catena.2013.08.006
    Conrad O(2006)SAGA-Program structure and current state implementation.In:B?hner J,McCloy KR,Strobl J(eds.),SAGA-Analysis and Modelling Applications,vol.115.G?ttinger Geographische Abhandlungen.pp 39-52.
    Costanzo D,Rotigliano E,Irigaray C,et al.(2012)Factors selection in landslide susceptibility modelling on large scale following the gis matrix method:application to the river Beiro basin(Spain).Natural Hazards and Earth System Science 12:327-340.https://doi.org/10.5194/nhess-12-327-2012
    Dahal RK,Hasegawa S,Nonomura A,et al.(2008)GIS-based weights-ofevidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping.Environmental Geology 54(2):314-324.https://doi.org/10.1007/s00254-007-0818-3
    Dávila-Harris P,Carrasco-Nú?ez G(2014)An unusual syneruptive bimodal eruption:The Holocene Cuicuiltic Member at Los Humeros caldera,Mexico.Journal of Volcanology and Geothermal Research 271:24-42.https://doi.org/10.1016/j.jvolgeores.2013.11.020
    Deb SK,El-Kadi AI(2009)Susceptibility assessment of shallow landslides on Oahu,Hawaii,under extreme-rainfall events.Geomorphology 108:219-233.https://doi.org/10.1016/j.geomorph.2009.01.009
    Fell R,Corominas J,Bonnard C,et al.(2008)Guidelines for landslide susceptibility,hazard and risk zoning for land-use planning.Engineering Geology 102(3-4):85-98.https://doi.org/10.1016/j.enggeo.2008.03.022
    Ferriz H,Mahood G(1984)Eruption rates and compositional trends at Los Humeros volcanic center,Puebla,Mexico.Journal Geophysics Research Earth 89:8511-8524.
    Fressard M,Thiery Y,Maquaire O(2014)Which data for quantitative landslide susceptibility mapping at operational scale?Case study of the Pays d’Auge plateau hillslopes(Normandy,France).Natural Hazards and Earth System Science 14(3):569-588.https://doi.org/10.5194/nhess-14-569-2014
    Glade T,Crozier M(2005)A review of scale dependency in landslide hazard and risk analysis.In:Glade T,Anderson M,Crozier M(eds)Landslide hazard and risk.John Wiley and Sons.England.pp 75-138.
    Goetz JN,Guthrie RH,Brenning A(2011)Integrating physical and empirical landslide susceptibility models using generalized additive models.Geomorphology 129(3):376-386.https://doi.org/10.1016/j.geomorph.2011.03.001
    Goetz JN,Brenning A,Petschko H,Leopold P(2015)Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling.Computers&Geosciences81:1-11.https://doi.org/10.1016/j.cageo.2015.04.007
    Gordo C,Zêzere JL,Marques R(2017)Effects of study area delineation on landslide susceptibility assessment results using statistical methods.8oCongresso Nacional de Geomorfologia 95-98.
    Gorum T,Fan X,van Westen CJ,et al.(2011)Distribution pattern of earthquake-induced landslides triggered by the 12May 2008 Wenchuan earthquake.Geomorphology 133(3-4):152-167.https://doi.org/10.1016/j.geomorph.2010.12.030
    Guzzetti F(2005).Landslide Hazzard and Risk Assessment.PhD thesis,Bonn University,Bonn,Germany.
    Guzzetti F,Carrara A,Cardinali M,Reichenbach P(1999)Landslide hazard evaluation:a review of current techniques and their application in a multi-scale study,Central Italy.Geomorphology 31:181-216.https://doi.org/10.1016/S0169-555X(99)00078-1
    Guzzetti F,Reichenbach P,Cardinali M,et al.(2005)Probabilistic landslide hazard assessment at the basin scale.Geomorphology 72:272-299.https://doi.org/10.1016/j.geomorph.2005.06.002
    Guzzetti F,Reichenbach P,Ardizzone F,et al.(2006)Estimating the quality of landslide susceptibility models,Geomorphology81(1-2):166-184.https://doi.org/10.1016/j.geomorph.2006.04.007
    Hastie T(2009)GAM:Generalized Additive Models R package version 1.08.https://CRAN.R-project.org/package=gam
    Hastie T,Tibshirani R(1986)Generalized Additive Models,Statistical Science 1(3):297-318.
    Hastie TJ,Tibshirani RJ(1990)Generalized Additive Models,1st ed.,Monographs on statistics and applied probability 43.Chapman and Hall/CRC,London;New York.
    Heckmann T,Gregg K,Gregg A,Becht M(2014)Sample size matters:investigating the effect of sample size on a logistic regression susceptibility model for debris flows.Natural Hazards and Earth System Science 14:259-278.https://doi.org/10.5194/nhess-14-259-2014
    Hosmer DW,Lemeshow S(2000)Applied logistic regression,2nd edn.Wiley,New York.pp 373.
    Hong H,Pradhan B,Xua C,Tien Bui D(2015)Spatial prediction of landslide hazard at the Yihuang area(China)using twoclass kernel logistic regression,alternating decision tree and support vector machines.Catena 133:266-281.https://doi.org/10.1016/j.catena.2015.05.019
    Hussin H,Zumpano V,Reichenbach P,et al.(2016)Different landslide sampling strategies in a grid-based bi-variate statistical susceptibility model.Geomorphology 253:508-523.https://doi.org/10.1016/j.geomorph.2015.10.030
    INEGI(2009)Prontuario de información geográfica municipal de los Estados Unidos Mexicanos.Teziutlán,Puebla.Instituto Nacional de Geografía y Estadística.p 9.(In Spanish).
    INEGI(2013a)Continuo de Elevaciones Mexicano 3.0(CEM 3.0)-descarga Antecedentes.Available online at:http://www.inegi.org.mx/geo/contenidos/datosrelieve/conti nental/continuoelevaciones.aspx(Accessed on 08 August2018)(In Spanish).
    INEGI(2013b)Modelo digital de elevación de alta resolución LiDAR,Tipo terreno con resolución de 5 m.Available online at:http://www.inegi.org.mx/est/contenidos/proyectos/Preview.aspx(Accessed on 08 August 2018)(In Spanish).
    Karatzoglou A,Smola A,Hornik K,Zeileis A(2004)KernlabAn S4 Package for Kernel methods in R.Journal of Statistical Software 11(9):1-20.http://www.jstatsoft.org/v11/i09/
    Kavzoglu T,Sahin EK,Colkesen I(2014)Landslide susceptibility mapping using GIS-based multicriteria decision analysis,support vector machines,and logistic regression.Landslides 11:425-439.https://doi.org/10.1007/s10346-013-0391-7
    Kavzoglu T,Sahin EK,Colkesen I(2015)Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm.Engineering Geology 192:101-112.https://doi.org/10.1016/j.enggeo.2015.04.004
    Kotsiantis SB(2007)Supervised Machine Learning:A Review of Classification Techniques.Informatica 31,249-268.
    Lee S,Choi J,Woo I(2004)The effect of spatial resolution on the accuracy of landslide susceptibility mapping:a case study in Boun,Korea.Geoscience Journal 8:51-60.https://doi.org/10.1007/BF02910278
    Legorreta-Paulín,Bursik M,Lugo-Hubp J,Zamorano-Orozco JJ(2010)Effect of pixel size on cartographic representation of shallow and deep-seated landslide,and its collateral effects on the forecasting of landslides by SINMAP and Multiple Logistic Regression landslide models.Physics and Chemistry of the Earth 35:137-148.https://doi.org/10.1016/j.pce.2010.04.008
    Moore ID,Grayson RB,Ladson AR(1991)Digital terrain modeling:a review of hydrological,geomorphological,and biological applications.Hydrological Process 5:3-30.https://doi.org/10.1002/hyp.3360050103
    Murillo-García FG,Alcántara-Ayala I(2017)Landslide inventory,Teziutlán municipality,Puebla,México(1942-2015).Journal of maps 13(2):767-776.https://doi.org/10.1080/17445647.2017.1381194
    Olaya V(2004)A Gentle Introduction to SAGA GIS.ftp://priede.bf.lu.lv/pub/GIS/datu_analiize/SAGA/SagaMan ual.pdf
    Palamakumbure D,Flentje P,Stirling D(2015)Consideration of optimal pixel resolution in deriving landslide susceptibility zoning within the Sydney Basin,New South Wales,Australia.Computers&Geosciences 82:13-22.https://doi.org/10.1016/j.cageo.2015.05.002
    Park NW,Chi KH(2008)Quantitative assessment of landslide susceptibility using high-resolution remote sensing data and a generalized additive model.International Journal of Remote Sensing 29:247-264.https://doi.org/10.1080/01431160701227661
    Petschko H,Bell R,Leopold P,et al.(2013)Landslide inventories for reliable susceptibility maps.In:Margottini C,Canuti P,Sassa K(Eds.),Landslide Science and Practice,vol.1:Landslide Inventory and Susceptibility and Hazard Zoning.Springer.
    Petschko H,Brenning A,Bell R,et al.(2014)Assessing the quality of landslide susceptibility maps-case study Lower Austria Natural Hazards and Earth System Science 14:95-118.http://doi.org/10.5194/nhess-14-95-2014
    Petschko H,Bell R,Glade T(2016)Effectiveness of visually analyzing LiDAR DTM derivatives for earth and debris slide inventory mapping for statistical susceptibility modelling.Landslides 13(5):857-872.https://doi.org/10.1007/s10346-015-0622-1
    Pourghasemi HR,Rahmati O(2018)Prediction of the landslide susceptibility:Which algorithm,which precision?Catena 162:177-192.https://doi.org/10.1016/j.catena.2017.11.022
    Pradhan S(2013)A comparative study on the predictive ability of the decision tree,support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS.Computers&Geosciences 51:350-365.https://doi.org/10.1016/j.cageo.2012.08.023
    Qi S,Xu Q,Lan H,et al.(2010)Spatial distribution analysis of landslides triggered by 2008.5.12 Wenchuan Earthquake,China Engineering Geology 116(1-2):95-108.http://doi.org/10.1016/j.enggeo.2010.07.011
    QGIS Development Team(2009)QGIS Geographic Information System.Open Source Geospatial Foundation.http://qgis.osgeo.org
    R Core Team(2016)R:A language and environment for statistical computing.R Foundation for Statistical Computing,Vienna,Austria.https://www.R-project.org/
    Regmi NR,Giardino JR,McDonald E,Vitek JD(2014)Acomparison of logistic regression based models of susceptibility to landslides in western Colorado,USA.Landslides 11:247-262.https://doi.org/10.1007/s10346-012-0380-2
    Reichenbach P,Rossi M,Malamud BD,et al.(2018)A review of statistically-based landslide susceptibility models.EarthScience Reviews 180:60-91.https://doi.org/10.1016/j.earscirev.2018.03.001
    Romer C,Ferentinou M(2016)Shallow landslide susceptibility assessment in a semiarid environment-A Quaternary catchment of Kwa Zulu-Natal,South Africa.Engineering Geology 201:29-44.https://doi.org/10.1016/j.enggeo.2015.12.013
    Rossi M,Guzzetti F,Reichenbach P,et al.(2010)Optimal landslide susceptibility zonation based on multiple forecasts.Geomorphology 114:129-142.https://doi.org/10.1016/j.geomorph.2009.06.020
    Salinas-Rodríguez JM,Castillo-Reynoso JE(2011)Carta Geologica Minera.Teziutlán E14B15 Puebla.Servicio Geológico Mexicano.
    San BT(2014)An evaluation of SVM using polygon-based random sampling in landslide susceptibility mapping:The Candir catchment area(western Antalya,Turkey).International Journal of Applied Earth Observation and Geoinformation 26:399-412.
    Schl?gel R,Marchesini I,Alvioli M,et al.(2018)Optimizing landslide susceptibility zonation:Effects of DEM spatial resolution and slope unit delineation on logistic regression models.Geomorphology 301:10-20.https://doi.org/10.1016/j.geomorph.2017.10.018
    Schratz P,Muenchow J,Iturritxa E,et al.(2018)Performance evaluation and hyperparameter tuning of statistical and machine-learning models using spatial data.Journal of LATEX Templates.https://arxiv.org/abs/1803.11266
    Sing T,Sander O,Beerenwinkel N,Lengauer T(2009)ROCR:Visualizing the Performance of Scoring Classifiers.R package version 1.0-4.http://cran.r-pro ject.org/package?ROCR
    Steger S,Glade T(2017)The Challenge of"Trivial Areas"in Statistical Landslide Susceptibility Modelling.In:Matja?M et al.(eds.)Advancing Culture of Living with Landslides WLF2017,Springer,Cham.2:803-808.https://doi.org/10.1007/978-3-319-53498-5_92
    Steger S,Brenning A,Bell R,et al.(2016a)Exploring discrepancies between quantitative validation results and the geomorphic plausibility of statistical landslide susceptibility maps,Geomorphology 262:8-23.https://doi.org/10.1016/j.geomorph.2016.03.015
    Steger S,Brenning A,Bell R,Glade T(2016b)The propagation of inventory-based positional errors into statistical landslide susceptibility models.Natural Hazards and Earth System Science 16(12):2729-2745.https://doi.org/10.5194/nhess-2016-301
    Steger S,Brenning A,Bell R,Glade T(2017)The influence of systematically incomplete shallow landslide inventories on statistical susceptibility models and suggestions for improvements.Landslides 14:1767-1781.https://doi.org/10.1007/s10346-017-0820-0
    Trigila A,Iadanza C,Esposito C,Scarascia-Mugnozza G(2015)Comparison of Logistic Regression and Random Forests techniques for shallow landslide susceptibility assessment in Giampilieri(NE Sicily,Italy).Geomorphology 249:119-136.https://doi.org/10.1016/j.geomorph.2015.06.001
    Van Den Eeckhaut M,Vanwalleghem T,Poesen J,et al.(2006)Prediction of landslide susceptibility using rare events logistic regression:A case-study in the Flemish Ardennes(Belgium).Geomorphology 76(3-4):392-410.https://doi.org/10.1016/j.geomorph.2005.12.003
    van Westen CJ,Rengers N,Terlien MTJ,Soeters R(1997)Prediction of the occurrence of slope instability phenomenal through GIS-based hazard zonation.Geologische Rundschau86:404-414.
    van Westen CJ,Seijmonsbergen AC,Mantovani F(1999)Comparing landslide hazard maps.Natural Hazards 20:137-158.
    van Westen CJ,Castellanos E,Kuriakose SL(2008)Spatial data for landslide susceptibility,hazard,and vulnerability assessment:An overview.Engineering Geology 102(3-4):112-131.https://doi.org/10.1016/j.enggeo.2008.03.010
    Vapnik V(1998)Statistical Learning Theory.John Wiley&Sons Inc.,New York.p 736.
    Varnes DJ,IAEG Commission on Landslides and other MassMovements(1984)Landslide hazard zonation:a review of principles and practice.The UNESCO Press,Paris.p 63.
    Vorpahl P,Elsenbeer H,M?rker M,Schr?der,B(2012)How can statistical models help to determine driving factors of landslides?Ecol.Model 239:27-39.https://doi.org/10.1016/j.ecolmodel.2011.12.007
    Wood SN(2006)Generalized additive models:an introduction with R.Chapman&Hall/CRC,Boca Raton,FL.
    Youssef AM,Pradhan B,Pourghasemi HR,Abdullahi S(2015)Landslide susceptibility assessment at Wadi Jawrah Basin,Jizan region,Saudi Arabia using two bivariate models in GIS.Geosciences Journal 19(3):449-469.https://doi.org/10.1007/s12303-014-0065-z
    Zêzere JL,Pereira S,Melo R,et al.(2017)Mapping landslide susceptibility using data-driven methods.Science of the Total Environment 589:250-267.https://doi.org/10.1016/j.scitotenv.2017.02.188
    Zweig MH,Campbell G(1993)Receiver-operating characteristic(ROC)plots.Clinical Chemistry 39:561-577.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700