用户名: 密码: 验证码:
Mooring System Optimisation and Effect of Different Line Design Variables on Motions of Truss Spar Platforms in Intact and Damaged Conditions
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mooring System Optimisation and Effect of Different Line Design Variables on Motions of Truss Spar Platforms in Intact and Damaged Conditions
  • 作者:O.A.Montasir ; A.Yenduri ; V.J.Kurian
  • 英文作者:O.A.Montasir;A.Yenduri;V.J.Kurian;Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS;Department of Civil Engineering, National University of Singapore;Dean of Research and Development, Providence College of Engineering;
  • 英文关键词:mooring optimisation;;spar platform;;particle swarm;;Morison equation;;implicit Newmark beta;;quasi-static
  • 中文刊名:China Ocean Engineering
  • 英文刊名:中国海洋工程(英文版)
  • 机构:Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS;Department of Civil Engineering, National University of Singapore;Dean of Research and Development, Providence College of Engineering;
  • 出版日期:2019-08-08
  • 出版单位:China Ocean Engineering
  • 年:2019
  • 期:04
  • 基金:partially supported by YUTP-FRG funded by PETRONAS
  • 语种:英文;
  • 页:6-18
  • 页数:13
  • CN:32-1441/P
  • ISSN:0890-5487
  • 分类号:P75;TE95
摘要
This paper presents the effect of mooring diameters, fairlead slopes and pretensions on the dynamic responses of a truss spar platform in intact and damaged line conditions. The platform is modelled as a rigid body with three degrees-of-freedom and its motions are analysed in time-domain using the implicit Newmark Beta technique. The mooring restoring force-excursion relationship is evaluated using quasi-static approach. MATLAB codes DATSpar and QSAML, are developed to compute the dynamic responses of truss spar platform and to determine the mooring system stiffness. To eliminate the conventional trial and error approach in the mooring system design, a numerical tool is also developed and described in this paper for optimising the mooring configuration. It has a graphical user interface and includes regrouping particle swarm optimisation technique combined with DATSpar and QSAML. A case study of truss spar platform with ten mooring lines is analysed using this numerical tool. The results show that optimum mooring system design benefits the oil and gas industry to economise the project cost in terms of material,weight, structural load onto the platform as well as manpower requirements. This tool is useful especially for the preliminary design of truss spar platforms and its mooring system.
        This paper presents the effect of mooring diameters, fairlead slopes and pretensions on the dynamic responses of a truss spar platform in intact and damaged line conditions. The platform is modelled as a rigid body with three degrees-of-freedom and its motions are analysed in time-domain using the implicit Newmark Beta technique. The mooring restoring force-excursion relationship is evaluated using quasi-static approach. MATLAB codes DATSpar and QSAML, are developed to compute the dynamic responses of truss spar platform and to determine the mooring system stiffness. To eliminate the conventional trial and error approach in the mooring system design, a numerical tool is also developed and described in this paper for optimising the mooring configuration. It has a graphical user interface and includes regrouping particle swarm optimisation technique combined with DATSpar and QSAML. A case study of truss spar platform with ten mooring lines is analysed using this numerical tool. The results show that optimum mooring system design benefits the oil and gas industry to economise the project cost in terms of material,weight, structural load onto the platform as well as manpower requirements. This tool is useful especially for the preliminary design of truss spar platforms and its mooring system.
引文
Agarwal,A.K.and Jain,A.K.,2003.Dynamic behavior of offshore spar platforms under regular sea waves,Ocean Engineering,30(4),487-516.
    Albrecht,C.H.,2005.Algoritmos Evolutivos AplicadosàSíntese EOtimiza??o de Sistemas de Ancoragem,Ph.D.Thesis,Rio de Janeiro,RJ,Brasil.
    Al-geelani,N.A.,Piah,M.A.M.,Adzis,Z.and Algeelani,M.A.,2013.Hybrid regrouping PSO based wavelet neural networks for characterization of acoustic signals due to surface discharges on H.V.glass insulators,Applied Soft Computing,13(12),4622-4632.
    American Petroleum Institute,2005.Design and Analysis of Stationkeeping Systems for Floating Structures,API RP 2SK,API Publishing Services,Washington,USA.
    Brits,R.,Engelbrecht,A.P.and Van Den Bergh,F.,2002.A niching particle swarm optimizer,Proceedings of the Fourth Asia-Pacific Conference on Simulated Evolution and Learning,Singapore.
    Cao,P.M.,1996.Slow Motion Responses of Compliant Offshore Structures,MSc.Thesis,Texas A&M University,Texas.
    Chakrabarti,S.K.,1987.Hydrodynamics of Offshore Structures,Computational Mechanics Publications,Southampton.
    Coello Coello,C.A.,Luna,E.H.and Aguirre,A.H.,2003.Use of particle swarm optimization to design combinational logic circuits,Proceedings of the International Conference on Evolvable Systems:From Biology to Hardware,Springer,Trondheim,Norway,pp.398-409.
    Eberhart,R.C.and Shi,Y.,2000.Comparing inertia weights and constriction factors in particle swarm optimization,Proceedings of the Congress on Evolutionary Computation,IEEE,La Jolla,CA,USA,pp.84-88.
    Evers,G.I.,2009.An Automatic Regrouping Mechanism to Deal with Stagnation in Particle Swarm Optimization,MSc.Thesis,The University of Texas-Pan American,Edinburg,TX.
    Glanville,R.S.,Paulling,J.R.,Halkyard,J.E.and Lehtinen,T.J.,1991.Analysis of the spar floating drilling production and storage structure,Proceedings of the 23rd Offshore Technology Conference,OTC,Houston,Texas.
    Hassan,R.,Cohanim,B.,De Weck,O.and Venter,G.,2005.A comparison of particle swarm optimization and the genetic algorithm,Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference,AIAA,Austin,Texas.
    Horton,E.E.and Halkyard,J.E.,1992.A spar platform for developing deep water oil fields,MTS’92,Marine Technology Society,Washington,DC,USA,pp.998-1005.
    Hu,X.H.,Eberhart,R.C.and Shi,Y.H.,2003.Engineering optimization with particle swarm,Proceedings of 2003 IEEE Swarm Intelligence Symposium,IEEE,Indianapolis,IN,USA,pp.53-57.
    Kathiravan,R.and Ganguli,R.,2007.Strength design of composite beam using gradient and particle swarm optimization,Composite Structures,(4),471-479.
    Kennedy,J.and Eberhart,R.,1995.Particle swarm optimization,Proceedings of ICNN'95-International Conference on Neural Networks,IEEE,Perth,WA,Australia,pp.1942-1948.
    Krohling,R.A.,dos Coelho,L.S.and Shi,Y.H.,2003.Cooperative particle swarm optimization for robust control system design,in:Advances in Soft Computing:Engineering Design and Manufacturing,Jose Manuel Benítez,Oscar Cordón,Frank Hoffmann,Rajkumar Roy(Eds.),Springer,London.
    Magee,A.R.,Sablok,A.,Maher,J.,Halkyard,J.,Finn,L.and Datta,I.,2000.Heave plate effectiveness in the performance of truss spars,Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering,New Orleans,pp.469-479.
    Mavrakos,S.A.,Papazoglou,V.J.,Triantafyllou,M.S.and Hatjigeorgiou,J.,1996.Deep water mooring dynamics,Marine Structures,9(2),181-209.
    McCluskey,S.,2008.Application of Particle Swarm Optimisation to Reinforced Concrete Beam Design,Faculty of Engineering,UW.
    Montasir,O.A.,Yenduri,A.and Kurian,V.J.,2015.Effect of mooring line configurations on the dynamic responses of truss spar platforms,Ocean Engineering,96,161-172.
    Montasir,O.A.,Yenduri,A.and Kurian,V.J.,2016.Evaluation of the dynamic responses of truss spar platforms for various mooring configurations with damaged lines,Ocean Engineering,123,411-421.
    Monteiro,B.F.,Albrecht,C.H.and Jacob,B.P.,2010.Application of the particle swarm optimization method on the optimization of mooring systems for offshore oil exploitation,Proceedings of the2nd International Conference on Engineering Optimization,Lisboa.
    Pascoal,R.,Huang,S.,Barltrop,N.and Guedes Soares,C.,2005.Equivalent force model for the effect of mooring systems on the horizontal motions,Applied Ocean Research,27(3),165-172.
    Pascoal,R.,Huang,S.,Barltrop,N.and Guedes Soares,C.,2006.Assessment of the effect of mooring systems on the horizontal motions with an equivalent force to model,Ocean Engineering,33(11-12),1644-1668.
    Ran,Z.H.,2000.Coupled Dynamic Analysis of Floating Structures in Waves and Currents,Ph.D.Thesis,Texas A&M University,Texas,USA.
    Shi,Y.and Eberhart,R.,1998.A modified particle swarm optimizer,Proceedings of 1998 IEEE International Conference on Evolutionary Computation.IEEE World Congress on Computational Intelligence,IEEE,Anchorage,AK,USA.
    Smith,R.J.and MacFarlane,C.J.,2001.Statics of a three component mooring line,Ocean Engineering,28(7),899-914.
    Technip document,2005.In Place Model Test Result Correlation,Technip Marine(M)Sdn.Bhd,Malaysia.
    Van Den Bergh,F.and Engelbrecht,A.P.,2001.Effects of swarm size on cooperative particle swarm optimisers,Proceedings of the Genetic and Evolutionary Computation Conference,San Francisco,USA.
    Van Santen,J.A.and De Werk,K.,1976.On the typical qualities of spar type structures for initial or permanent field development,Proceedings of the 8th Offshore Technology Conference,OTC,Houston,Texas.
    Wang,Z.,2012.An Evolutionary Optimisation Study on Offshore Mooring System Design,Ph.D.Thesis,University of Wollongong,Wollongong,Australia.
    Yaakob,O.,Zainudin,N.,Samian,Y.,Abdul,A.M.,Malik,O.Y.and Palaraman,R.A.,2004.Developing Malaysian ocean wave database using satellite,Proceedings of the 25th Asian Conference on Remote Sensing,Geo-Informatics and Space Technology Development Agency,Chiang Mai,Thailand.
    Zheng,Y.L.,Ma,L.H.,Zhang,L.Y.and Qian,J.X.,2003.Robust PIDcontroller design using particle swarm optimizer,Proceedings of2003 IEEE International Symposium on Intelligent Control,IEEE,Houston,TX,USA,pp.974-979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700