用户名: 密码: 验证码:
内质网应激与自噬及其交互作用影响内皮细胞凋亡
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Endoplasmic Reticulum Stress and Autophagy on Endothelial Cell Apoptosis
  • 作者:徐静尊 ; 鲁敏
  • 英文作者:XU Jing-Zun;LU Min;Department of Cardiology, Henan Provincial People's Hospital;
  • 关键词:内质网应激 ; 自噬 ; 凋亡 ; 内皮细胞
  • 英文关键词:endoplasmic reticulum stress(ERS);;autophagy;;apoptosis;;endothelial cell(EC)
  • 中文刊名:中国生物化学与分子生物学报
  • 英文刊名:Chinese Journal of Biochemistry and Molecular Biology
  • 机构:河南省人民医院心内科;
  • 出版日期:2019-03-20
  • 出版单位:中国生物化学与分子生物学报
  • 年:2019
  • 期:03
  • 基金:河南省重点攻关项目(No.112102310223)资助~~
  • 语种:中文;
  • 页:17-27
  • 页数:11
  • CN:11-3870/Q
  • ISSN:1007-7626
  • 分类号:R329.25
摘要
内质网应激是普遍存在于真核细胞中的应激-防御机制。在内环境稳态遭到破坏的情况下,未折叠蛋白质反应的3条信号通路,分别通过增强蛋白质折叠能力、减少蛋白质生成和促进内质网相关蛋白质降解等途径缓解细胞内压力。同时,也通过多种分子信号机制调控细胞凋亡。自噬是一种生理性的降解机制。通过形成自噬泡并与溶酶体结合摄取并水解胞内受损细胞器和蛋白质等,清除代谢废物,维持细胞正常功能。自噬缺陷或过度激活均可导致细胞凋亡或非程序性死亡。自噬的程度和细胞内压力水平有关。内质网应激通过未折叠蛋白质反应和Ca~(2+)浓度变化及其相关分子信号调控自噬。自噬又可反馈性调节内质网应激反应,二者相互作用,在内皮细胞凋亡过程中发挥重要作用。未来内质网应激和自噬可作为药物靶点为内皮相关性疾病提供诊疗策略。
        Endoplasmic reticulum stress is a prevalent stress-defense mechanism in eukaryotic cells. In the case of homeostasis disruption, the three signaling pathways of unfolded protein response are activated to relieve the intracellular pressure through enhancing protein folding, reducing protein production and promoting endoplasmic reticulum-related protein degradation. It regulates apoptosis through a variety of molecular signaling mechanisms. Autophagy is a physiological degradation mechanism that removes metabolic wastes and maintains normal cellular functions by forming autophagic vesicles and ingesting with lysosomes and hydrolyzing intracellular damaged organelles and proteins. Degeneration or over-activation of autophagy lead to apoptosis or non-programmed death and the degree of autophagy is related to the intracellular pressure level. Endoplasmic reticulum stress regulates autophagy through unfolded protein response and changes in Ca~(2+) concentration. Autophagy can also feedback the endoplasmic reticulum stress response and the interactions plays an important role in endothelial cell apoptosis. Future endoplasmic reticulum stress and autophagy can be used as drug targets to provide a diagnosis and treatment strategy for endothelial-related diseases.
引文
[1] Lenna S, Han R, Trojanowska M. Endoplasmic reticulum stress and endothelial dysfunction[J]. IUBMB Life, 2014, 66(8): 530-537
    [2] Smiljic S. The clinical significance of endocardial endothelial dysfunction[J]. Medicina (Kaunas), 2017, 53(5): 295-302
    [3] Bell RAV, Megeney LA. Evolution of caspase-mediated cell death and differentiation: twins separated at birth[J]. Cell Death Differ, 2017, 24(8): 1359-1368
    [4] Ma M, Song L, Yan H, et al. Low dose tunicamycin enhances atherosclerotic plaque stability by inducing autophagy[J]. Biochem Pharmacol, 2016, 100: 51-60
    [5] Lu M, Lawrence DA, Marsters S, et al. Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis[J]. Science, 2014, 345(6192): 98-101
    [6] Tamaki T, Kamatsuka K, Sato T, et al. A novel transmembrane protein defines the endoplasmic reticulum stress -induced cell death pathway[J]. Biochem Biophys Res Commun, 2017, 486(1): 149-155
    [7] Li Y, Zhu D, Hou L, et al. TRB3 reverses chemotherapy resistance and mediates crosstalk between endoplasmic reticulum stress and AKT signaling pathways in MHCC97H human hepatocellular carcinoma cells[J]. Oncol Lett, 2018, 15(1): 1343-1349
    [8] Kaufman RJ, Malhotra JD. Calcium trafficking integrates endoplasmic reticulum function with mitochondrial bioenergetics[J]. Biochim Biophys Acta, 2014, 1843(10): 2233-2239
    [9] Jiménez Fernández D, Lamkanfi M. Inflammatory caspases: key regulators of inflammation and cell death[J]. Biol Chem, 2015, 396(3): 193-203
    [10] Lam M, Lawrence DA, Ashkenazi A, et al. Confirming a critical role for death receptor 5 and caspase-8 in apoptosis induction by endoplasmic reticulum stress[J]. Cell Death Differ, 2018, 25(8): 1530-1531
    [11] Shigemi Z, Manabe K, Hara N, et al. Methylseleninic acid and sodium selenite induce severe ER stress and subsequent apoptosis through UPR activation in PEL cells[J]. Chem Biol Interact, 2017, 266: 28-37
    [12] Kwak GH, Kim HY. MsrB3 deficiency induces cancer cell apoptosis through p53-independent and ER stress-dependent pathways[J]. Arch Biochem Biophys, 2017, 621: 1-5
    [13] Kim C, Kim B. Anti-cancer natural products and their bioactive compounds inducing ER stress-mediated apoptosis: A review[J]. Nutrients, 2018, 10(8): pii: E1021
    [14] Vande Walle L, Jiménez Fernández D, Demon D, et al. Does caspase-12 suppress inflammasome activation?[J]. Nature, 2016, 534(7605): E1-E4
    [15] Li P, Zhou L, Zhao T, et al. Caspase-9: structure, mechanisms and clinical application[J]. Oncotarget, 2017, 8(14): 23996-24008
    [16] Becker C, Watson AJ, Neurath MF. Complex roles of caspases in the pathogenesis of inflammatory bowel disease[J]. Gastroenterology, 2013, 144(2): 283-293
    [17] Ngabire D, Kim GD. Autophagy and inflammatory response in the tumor microenvironment[J]. Int J Mol Sci, 2017, 18(9). pii: E2016
    [18] Cadwell K. Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis[J]. Nat Rev Immunol, 2016, 16(11): 661-675
    [19] Yu X, Muňoz-Alarcón A, Ajayi A, et al. Inhibition of autophagy via p53-mediated disruption of ULK1 in a SCA7 polyglutamine disease model[J]. J Mol Neurosci, 2013, 50(3): 586-599
    [20] Denisenko TV, Pivnyuk AD, Zhivotovsky B. p53-autophagy-metastasis link[J]. Cancers (Basel), 2018, 10(5). pii: E148
    [21] Mariňo G, Niso-Santano M, Baehrecke EH, et al. Self-consumption: the interplay of autophagy and apoptosis[J]. Nat Rev Mol Cell Biol, 2014, 15(2): 81-94
    [22] Aubrey BJ, Kelly GL, Janic A, et al. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression?[J]. Cell Death Differ, 2018, 25(1): 104-113
    [23] Dai H, Ding H, Peterson KL, et al. Measurement of BH3-only protein tolerance[J]. Cell Death Differ, 2018, 25(2): 282-293
    [24] Shaffer L. Out with the bad: Studying autophagy to fight infectious disease[J]. Nat Med, 2016,22(4): 334-335
    [25] Thorburn J, Andrysik Z, Staskiewicz L, et al. Autophagy controls the kinetics and extent of mitochondrial apoptosis by regulating PUMA levels[J]. Cell Rep, 2014, 7(1): 45-52
    [26] Ney PA. Mitochondrial autophagy: Origins, significance, and role of BNIP3 and NIX[J]. Biochim Biophys Acta, 2015, 1853(10 Pt B): 2775-2783
    [27] Dai Y, Grant S. BCL2L11/Bim as a dual-agent regulating autophagy and apoptosis in drug resistance[J]. Autophagy, 2015, 11(2): 416-418
    [28] Farag AK, Roh EJ. Death-associated protein kinase (DAPK) family modulators: Current and future therapeutic outcomes[J]. Med Res Rev, 2019, 39(1):349-385
    [29] Granato M, Romeo MA, Tiano MS, et al. Bortezomib promotes KHSV and EBV lytic cycle by activating JNK and autophagy[J]. Sci Rep, 2017, 7(1): 13052
    [30] Tang B, Tang F, Wang Z, et al. Upregulation of Akt/NF-κB-regulated inflammation and Akt/Bad-related apoptosis signaling pathway involved in hepatic carcinoma process: suppression by carnosic acid nanoparticle[J]. Int J Nanomedicine, 2016, 11: 6401-6420
    [31] Wang B, Luo Y, Zhou X, et al. Trifluoperazine induces apoptosis through the upregulation of Bax/Bcl-2 and downregulated phosphorylation of AKT in mesangial cells and improves renal function in lupus nephritis mice[J]. Int J Mol Med, 2018, 41(6): 3278-3286
    [32] Vu NT, Park MA, Shultz JC, et al. hnRNP U enhances caspase-9 splicing and is modulated by AKT-dependent phosphorylation of hnRNP L[J]. J Biol Chem, 2013, 288(12): 8575-8584
    [33] Hart LS, Cunningham JT, Datta T, et al. ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth[J]. J Clin Invest, 2012, 122(12): 4621-4634
    [34] Zhang X, Cheng Q, Yin H, et al. Regulation of autophagy and EMT by the interplay between p53 and RAS during cancer progression (Review)[J]. Int J Oncol, 2017, 51(1): 18-24
    [35] Wang Y, Wang XD, Lapi E, et al. Autophagic activity dictates the cellular response to oncogenic RAS[J]. Proc Natl Acad Sci U S A, 2012, 109(33): 13325-13330
    [36] Wang L, Cho YL, Tang Y, et al. PTEN-L is a novel protein phosphatase for ubiquitin dephosphorylation to inhibit PINK1-Parkin-mediated mitophagy[J]. Cell Res, 2018, 28(8): 787-802
    [37] Nguyen TN, Padman BS, Lazarou M. Deciphering the molecular signals of PINK1/Parkin mitophagy[J]. Trends Cell Biol, 2016, 26(10): 733-744
    [38] Hou W, Han J, Lu C, et al. Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis[J]. Autophagy, 2010, 6(7): 891-900
    [39] Amir M, Zhao E, Fontana L, et al. Inhibition of hepatocyte autophagy increases tumor necrosis factor-dependent liver injury by promoting caspase-8 activation[J]. Cell Death Differ, 2013, 20(7): 878-887
    [40] Huang X, Qi Q, Hua X, et al. Beclin 1, an autophagy-ralated gene, augments apoptosis in U87glioblastoma cells[J]. Oncol Rep, 2014, 31(4): 1761-1767
    [41] Maejima Y, Isobe M, Sadoshima J. Regulation of autophagy by Beclin 1 in the heart[J]. J Mol Cell Cardiol, 2016, 95: 19-25
    [42] Shi M, Zhang T, Sun L, et al. Calpain, Atg5 and Bak play important roles in the crosstalk between apoptosis and autophagy induced by influx of extracellular calcium[J]. Apoptosis, 2013, 18(4): 435-451
    [43] Rubinstein AD, Eisenstein M, Ber Y, et al. The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis[J]. Mol Cell, 2011, 44(5): 698-709
    [44] Kessel DH, Price M, Reiners JJ Jr. ATG7 deficiency suppresses apoptosis and cell death induced by lysosomal photodamage[J]. Autophagy, 2012, 8(9): 1333-1341
    [45] Ikeda F. The anti-apoptotic ubiquitin conjugating enzyme BIRC6/BRUCE regulates autophagosome- lysosome fusion[J]. Autophagy, 2018, 14(7): 1283-1284
    [46] Nezis IP, Shravage BV, Sagona AP, et al. Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis[J]. J Cell Biol, 2010, 190(4): 523-531
    [47] Vion AC, Kheloufi M, Hammoutene A, et al. Autophagy is required for endothelial cell alignment and atheroprotection under physiological blood flow[J]. Proc Natl Acad Sci U S A, 2017, 114(41): E8675-E8684
    [48] Grootaert MOJ, Roth L, Schrijvers DM, et al. Defective autophagy in atherosclerosis: to die or to senesce? [J]. Oxid Med Cell Longev, 2018, 2018: 7687083
    [49] Deegan S, Saveljeva S, Gorman AM, et al. Stress-induced self-cannibalism: on the regulation of autophagy by endoplasmic reticulum stress[J]. Cell Mol Life Sci, 2013, 70(14): 2425-2441
    [50] Feng D, Wang B, Wang L, et al. Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting endoplasmic reticulum stress-dependent autophagy via PERK and IRE1 signalings[J]. J Pineal Res, 2017, 62(3): doi: 10.1111/jpi.12395
    [51] 丰梅, 付凌玲, 张伟华, 等. 内质网应激调控细胞自噬和凋亡[J]. 中国细胞生物学学报(Feng M, Fu LL, Zhang WH, et al. Endoplasmic reticulum stress regulates cell autophagy and apoptosis[J]. Chin J Cell Biol), 2018, 40(3): 455-462
    [52] Cybulsky AV. Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases[J]. Nat Rev Nephrol, 2017, 13(11): 681-696
    [53] Song S, Tan J, Miao Y, et al. Crosstalk of ER stress-mediated autophagy and ER-phagy: involvement of UPR and the core autophagy machinery[J]. J Cell Physiol, 2018, 233(5): 3867-3874
    [54] Hirasawa M, Kurita-Ochiai T. Porphyromonas gingivalis induces apoptosis and autophagy via ER stress in human umbilical vein endothelial cells[J]. Mediators Inflamm, 2018, 2018: 1967506
    [55] Li W, Yang Q, Mao Z. Signaling and induction of chaperone-mediated autophagy by the endoplasmic reticulum under stress conditions[J]. Autophagy, 2018, 14(6): 1094-1096
    [56] Li X, Zhu G, Gou X, et al. Negative feedback loop of autophagy and endoplasmic reticulum stress in rapamycin protection against renal ischemia-reperfusion injury during initial reperfusion phase[J]. FASEB J, 2018,fj201800299R. doi: 10.1096/fj.201800299R
    [57] Mochida K, Oikawa Y, Kimura Y, et al. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus[J]. Nature, 2015, 522(7556): 359-362
    [58] Khaminets A, Heinrich T, Mari M, et al. Regulation of endoplasmic reticulum turnover by selective autophagy[J]. Nature, 2015, 522(7556): 354-358
    [59] Fumagalli F, Noack J, Bergmann TJ, et al. Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery[J]. Nat Cell Biol, 2016, 18(11):1173-1184
    [60] Grumati P, Morozzi G, H?lper S, et al. Full length RTN3 regulates turnover of tubular endoplasmic reticulum via selective autophagy[J]. Elife, 2017, 6. pii: e25555
    [61] Smith MD, Harley ME, Kemp AJ, et al. CCPG1 is a non-canonical autophagy cargo receptor essential for ER-phagy and pancreatic ER proteostasis[J]. Dev Cell, 2018, 44(2): 217-232.e11
    [62] Hong D, Bai YP, Gao HC, et al. Ox-LDL induces endothelial cell apoptosis via the LOX-1-dependent endoplasmic reticulum stress pathway[J]. Atherosclerosis, 2014, 235(2): 310-317
    [63] Li J, Liang X, Wang Y, et al. Investigation of highly expressed PCSK9 in atherosclerotic plaques and ox-LDL-induced endothelial cell apoptosis[J]. Mol Med Rep, 2017, 16(2): 1817-1825
    [64] Volmer R, Ron D. Lipid-dependent regulation of the unfolded protein response[J]. Curr Opin Cell Biol, 2015, 33: 67-73
    [65] Toma L, Sanda GM, Niculescu LS, et al. Caffeic acid attenuates the inflammatory stress induced by glycated LDL in human endothelial cells by mechanisms involving inhibition of AGE-receptor, oxidative, and endoplasmic reticulum stress[J]. Biofactors, 2017, 43(5): 685-697
    [66] Che J, Liang B, Zhang Y, et al. Kaempferol alleviates ox-LDL-induced apoptosis by up-regulation of autophagy via inhibiting PI3K/Akt/mTOR pathway in human endothelial cells[J]. Cardiovasc Pathol, 2017, 31: 57-62
    [67] Lv J, Yang L, Guo R, et al. Ox-LDL-induced microRNA-155 promotes autophagy in human endothelial cells via repressing the Rheb/ mTOR pathway[J]. Cell Physiol Biochem, 2017, 43(4): 1436-1448
    [68] Kim HS, Montana V, Jang HJ, et al. Epigallocatechin gallate (EGCG) stimulates autophagy in vascular endothelial cells: a potential role for reducing lipid accumulation[J]. J Biol Chem, 2013, 288(31): 22693-22705
    [69] Lin HH. In Vitro and in Vivo Atheroprotective effects of Gossypetin against endothelial cell injury by induction of autophagy[J]. Chem Res Toxicol, 2015, 28(2): 202-215
    [70] Torisu K, Singh KK, Torisu T, et al. Intact endothelial autophagy is required to maintain vascular lipid homeostasis[J]. Aging Cell, 2016, 15(1): 187-191
    [71] Margariti A, Li H, Chen T, et al. XBP1 mRNA splicing triggers an autophagic response in endothelial cells through BECLIN-1 transcriptional activation[J]. J Biol Chem, 2013, 288(2): 859-872
    [72] Yu W, Liu X, Feng L, et al. Glycation of paraoxonase 1 by high glucose instigates endoplasmic reticulum stress to induce endothelial dysfunction in vivo[J]. Sci Rep, 2017, 7: 45827
    [73] Lu T, Zhou D, Gao P, et al. Resveratrol attenuates high glucose-induced endothelial cell apoptosis via mediation of store-operated calcium entry[J]. Mol Cell Biochem, 2018, 442(1-2): 73-80
    [74] Xie Y, You SJ, Zhang YL, et al. Protective role of autophagy in AGE-induced early injury of human vascular endothelial cells[J]. Mol Med Rep, 2011, 4(3): 459-464
    [75] 胡鹏飞, 赖东武, 何红. 自噬在晚期糖基化终产物诱导的内皮细胞凋亡中的作用[J]. 中国病理生理杂志(Hu PF, Lai DW, He H. Autophagy plays a protective role in advanced glycation end product-induced apoptosis of vascular endothelial cells[J]. Chin J Pathophysiol), 2012, 28(6): 1006-1011
    [76] Zhang Z, Zhang S, Wang Y, et al. Autophagy inhibits high glucose induced cardiac microvascular endothelial cells apoptosis by mTOR signal pathway[J]. Apoptosis, 2017, 22(12): 1510-1523
    [77] Weikel KA, Cacicedo JM, Ruderman NB, et al. Glucose and palmitate uncouple AMPK from autophagy in human aortic endothelial cells[J]. Am J Physiol Cell Physiol, 2015, 308(3): C249-C263
    [78] Pan L, Hong Z, Yu L, et al. Shear stress induces human aortic endothelial cell apoptosis via interleukin-1 receptor-associated kinase 2-induced endoplasmic reticulum stress[J].Mol Med Rep,2017,16(5):7205- 7212
    [79] Bailey KA, Haj FG, Simon SI, et al. Atherosusceptible shear stress activates endoplasmic reticulum stress to promote endothelial inflammation[J]. Sci Rep, 2017, 7(1): 8196
    [80] Yao P, Zhao H, Mo W, et al. Laminar shear stress promotes vascular endothelial cell autophagy through upregulation with Rab4[J]. DNA Cell Biol, 2016, 35(3): 118-123
    [81] Kim KA, Shin D, Kim JH, et al. Role of Autophagy in endothelial damage and blood-brain barrier disruption in ischemic stroke[J]. Stroke, 2018, 49(6): 1571-1579
    [82] Zhou B, Li H, Liu J, et al. Intermittent injections of osteocalcin reverse autophagic dysfunction and endoplasmic reticulum stress resulting from diet-induced obesity in the vascular tissue via the NFκB-p65- dependent mechanism[J]. Cell Cycle, 2013, 12(12): 1901-1913
    [83] Ye M, Qiu H, Cao Y, et al. Curcumin improves palmitate-induced insulin resistance in human umbilical vein endothelial cells by maintaining proteostasis in endoplasmic reticulum[J]. Front Pharmacol, 2017, 8: 148
    [84] Bertrand L, Toborek M. Dysregulation of endoplasmic reticulum stress and autophagic responses by the antiretroviral drug efavirenz[J]. Mol Pharmacol, 2015, 88(2): 304-315
    [85] Zhu T, Yao Q, Wang W, et al. iNOS induces vascular endothelial cell migration and apoptosis via autophagy in ischemia/reperfusion injury[J]. Cell Physiol Biochem, 2016, 38(4): 1575-1588
    [86] Ochi M, Kawai Y, Tanaka Y, et al. Characterization of nicardipine hydrochloride-induced cell injury in human vascular endothelial cells[J]. J Toxicol Sci, 2015, 40(1): 71-76
    [87] Wang Y, Tao TQ, Song DD, et al. Calreticulin ameliorates hypoxia/reoxygenation-induced human microvascular endothelial cell injury by inhibiting autophagy[J]. Shock, 2018, 49(1): 108-116
    [88] Li W, Sultana N, Siraj N, et al. Autophagy dysfunction and regulatory cystatin C in macrophage death of atherosclerosis[J]. J Cell Mol Med, 2016, 20(9): 1664-1672
    [89] Swaminathan B, Goikuria H, Vega R, et al. Autophagic marker MAP1LC3B expression levels are associated with carotid atherosclerosis symptomatology[J]. PLoS One, 2014, 9(12): e115176
    [90] Zheng XT, Wu ZH, Wei Y, et al. Induction of autophagy by salidroside through the AMPK-mTOR pathway protects vascular endothelial cells from oxidative stress-induced apoptosis[J]. Mol Cell Biochem, 2017, 425(1-2): 125-138

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700