用户名: 密码: 验证码:
转BpTCP7白桦耐盐碱能力分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of Salt-alkali Tolerance of BpTCP7 Transgenic Birch
  • 作者:张园 ; 李芳蕊 ; 李洋 ; 许思佳 ; 安琳君 ; 李慧玉
  • 英文作者:ZHANG Yuan;LI Fangrui;LI Yang;XU Sijia;AN Linjun;LI Huiyu;Northeast Forestry University;
  • 关键词:白桦 ; BpTCP7 ; 转基因 ; NaHCO_3 ; 生理指标
  • 英文关键词:Betula platyphylla;;BpTCP7;;transgenic lines;;NaHCO3;;physiological indexes
  • 中文刊名:福建林业科技
  • 英文刊名:Journal of Fujian Forestry Science and Technology
  • 机构:东北林业大学;
  • 出版日期:2019-03-25
  • 出版单位:福建林业科技
  • 年:2019
  • 期:01
  • 基金:东北林业大学大学生创新训练项目(201710225298);; 国家重点研发计划(2017YFD0600603)
  • 语种:中文;
  • 页:17-20+66
  • 页数:5
  • CN:35-1136/S
  • ISSN:1002-7351
  • 分类号:S792.153
摘要
为探究转BpTCP7基因白桦的耐盐碱能力,对前期获得的4个转BpTCP7白桦株系(TCP7-1,TCP7-2,TCP7-3,TCP7-4)及非转基因对照株系进行不同浓度的NaHCO_3处理,通过生长量、SOD、MDA及脯氨酸测定,分析转基因株系的耐盐碱能力。结果表明:低浓度的NaHCO_3(0.2%)处理后转基因及对照株系差别不明显,但中、高浓度的NaHCO_3(0.4%、0.8%)处理后,对照株系的细胞膜损伤程度明显高于大部分转基因株系,而渗透调节物及活性氧清除酶类的积累明显低于大部分转基因株系;大部分转基因株系的高生长也高于对照株系。说明BpTCP7基因一定程度上提高了植物的抗盐碱能力。
        To explore the salt tolerance of BpTCP7 transgenic lines,in this study,4 transgenic lines(TCP7-1,TCP7-2,TCP7-3,TCP7-4)and 1 non-transgenic line were treated with different concentrations of NaHCO_3.The salt tolerance of transgenic lines was analyzed by growth,SOD,MDA and proline determination.The results showed that the difference between transgenic and control lines of salt treated with low concentration is not obvious,but the cell membrane damage of salt treated with medium and high concentration was significantly higher than that of most transgenic lines,while the accumulation of osmotic regulators and active oxygen scavenging enzymes was significantly lower than that of most transgenic lines.The high growth of most transgenic lines was higher than that of the control line.It is indicated that the BpTCP7 gene improves the ability of salt tolerance of plants to some extent.
引文
[1]Howarth D G,Donoghue M J.Phylogenetic analysis of the "ECE"(CYC/TB1)clade reveals duplications predating the core eudicots[J].Proceedings of the National Academy of Sciences,2006,103(24):9101-9106.
    [2]Navaud O,Dabos P,Carnus E,et al.TCP transcription factors predate the emergence of land plants[J].Journal of Molecular Evolution,2007,65(1):23-33.
    [3]Damerval C,Le Guilloux M,Jager M,et al.Diversity and evolution of CYCLOIDEA-like TCP genes in relation to flower development in Papaveraceae[J].Plant Physiology,2007,143(2):759-772.
    [4]Gao Y,Zhang D,Li J.TCP1 modulates DWF4 Expression via directly interacting with the GGNCCC motifs in the promoter region of DWF4 in Arabidopsis thaliana[J].Journal of Genetics and Genomics,2015,42(7):383-392.
    [5]Welchen E,Gonzalez DH.Overrepresentation of elements recognized by TCP-domain transcription factors in the upstream regions of nuclear genes encoding components of the mitochondrial oxidative phosphorylation Machinery[J].Plant Physiology,2006,141(2):540-545.
    [6]Aguilar-Martínez J A,Poza-Carrión C,Cubas P.Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds[J].The Plant Cell Online,2007,19(2):458-472.
    [7]Crawford B C,Nath U,Carpenter R,et al.CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum[J].Plant Physiol,2004,135(1):244-253.
    [8]Koyama T,Furutani M,Tasaka M,et al.TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis[J].Plant Cell,2007,19(2):473-484.
    [9]Nath U,Aggarwal P,Challa K R.Activation of YUCCA5 by the Transcription Factor TCP4 Integrates Developmental and Environmental Signals to Promote Hypocotyl Elongation in Arabidopsis[J].Plant Cell,2016(28):2117-2130.
    [10]Danisman S,van der Wal F,Dhondt S,et al.Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically[J].Plant Physiol,2012,159(4):1511-1523.
    [11]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:167-139,184-185,195-197,261-263.
    [12]中国科学院上海植物生理研究所,上海植物生理学会.现代植物生理学实验指南[M].北京:科学出版社,1999:303.
    [13]侯福林.植物生理学实验教程[M].北京:科学出版社,2004:91.
    [14]王星,刘肖飞,周宜君,等.植物SOD基因表达调控的分子机制[J].中国油料作物学报,2014,36(2):275-281.
    [15]刘西平,胥耀平,王妹清,等.低温对栾树幼苗衰老与脂质过氧化关系[J].西北林学院学报,1995,10(4):72-75.
    [16]MUKHOPADHYAY P,TYAGI A K.OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways[J].Scientific Reports,2015(5):9998.
    [17]刘春浩,梁楠松,于磊,等.水曲柳TCP4转录因子克隆及胁迫和激素下的表达分析[J].北京林业大学学报,2017,39(6):22-31.
    [18]Wang S T,Sun X L,Hoshino Y,et al.MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice(Oryza sativa L.)[J].PLoS One,2014(9):e91357.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700