用户名: 密码: 验证码:
Composition and origin of lipid biomarkers in the surface sediments from the southern Challenger Deep, Mariana Trench
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Composition and origin of lipid biomarkers in the surface sediments from the southern Challenger Deep, Mariana Trench
  • 作者:Hongxiang ; Guan ; Linying ; Chen ; Min ; Luo ; Lihua ; Liu ; Shengyi ; Mao ; Huangmin ; Ge ; Mei ; Zhang ; Jiasong ; Fang ; Duofu ; Chen
  • 英文作者:Hongxiang Guan;Linying Chen;Min Luo;Lihua Liu;Shengyi Mao;Huangmin Ge;Mei Zhang;Jiasong Fang;Duofu Chen;Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences;Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology;Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University;
  • 英文关键词:Mariana Trench;;Lipid biomarkers;;Organic matter;;Topography;;Hydrodynamics
  • 中文刊名:Geoscience Frontiers
  • 英文刊名:地学前缘(英文版)
  • 机构:Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences;Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology;Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University;
  • 出版日期:2019-01-15
  • 出版单位:Geoscience Frontiers
  • 年:2019
  • 期:01
  • 基金:supported by Qingdao National Labo-ratory for Marine Science and Technology (Grant Nos.QNLM2016ORP0210 and QNLM2016ORP0208);; the NSFC (GrantNos. 41473080, 41606091, and 41703077);; the Strategic PriorityResearch Program of the Chinese Academy of Sciences (Grant No.XDB06030102);; the Shanghai Sailing Program (No.17YF1407800);; JF is grateful for the support by the NSFC (Grant Nos.91328208 and 41373071)
  • 语种:英文;
  • 页:355-364
  • 页数:10
  • CN:11-5920/P
  • ISSN:1674-9871
  • 分类号:P744
摘要
The surface sediments collected from the southern Mariana Trench at water depths between ca.4900 m and 7068 m were studied using lipid biomarker analyses to reveal the origin and distribution of organic matters. For all samples, an unresolved complex mixture(UCM) was present in the hydrocarbon fractions, wherein resistant component tricyclic terpanes were detected but C_(27)-C _(29) regular steranes and hopanes indicative of a higher molecular weight range of petroleum were almost absent.This biomarker distribution patterns suggested that the UCM and tricyclic terpanes may be introduced by contamination of diesel fuels or shipping activities and oil seepage elsewhere. The well-developed faults and strike-slip faults in the Mariana subduction zone may serve as passages for the petroleum hydrocarbons. In addition, the relative high contents of even n-alkanes and low Carbon Preference Indices indicated that the n-alkanes were mainly derived from bacteria or algae. For GDGTs, the predominance of GDGT-0 and crenarchaeol, together with low GDGT-0/Crenarchaeol ratios(ranging from0.86 to 1.64), suggests that the GDGTs in samples from the southern Mariana Trench were mainly derived from planktic Thaumarchaeota. However, the high GDGT-0/crenarchaeol ratio(10.5) in sample BC07 suggests that the GDGTs probably were introduced by methanogens in a more anoxic environment. Furthermore, the n-alkanes C_(19)-C_(22) and the n-fatty acids C_(20:0)-C_(22:0) were depleted in~(13)C by 3‰ compared to n-alkanes C_(16)-C_(18) and the n-fatty acids C_(14:0)-C_(18:0), respectively, which was interpreted to result from the preferential reaction of fatty acid fragments with carbon "lighter" terminal carboxyl groups during carbon chain elongation from the precursors to products. The abundance of total alkanes, carboxylic acids, alcohols and total lipids were generally increased along the down-going seaward plate, suggesting the lateral organic matter inputs play an important role in organic matter accumulation in hadal trenches. The extremely high contents of biomarkers in sample BC11 were most likely related to trench topography and current dynamics, since the lower steepness caused by graben texture and proximity to the trench axis may result in higher sedimentation rate. This paper, for the first time, showed the biomarker patterns in surface sediments of the Mariana Trench and shed light on biogeochemistry of the hardly reached trench environment.
        The surface sediments collected from the southern Mariana Trench at water depths between ca.4900 m and 7068 m were studied using lipid biomarker analyses to reveal the origin and distribution of organic matters. For all samples, an unresolved complex mixture(UCM) was present in the hydrocarbon fractions, wherein resistant component tricyclic terpanes were detected but C_(27)-C _(29) regular steranes and hopanes indicative of a higher molecular weight range of petroleum were almost absent.This biomarker distribution patterns suggested that the UCM and tricyclic terpanes may be introduced by contamination of diesel fuels or shipping activities and oil seepage elsewhere. The well-developed faults and strike-slip faults in the Mariana subduction zone may serve as passages for the petroleum hydrocarbons. In addition, the relative high contents of even n-alkanes and low Carbon Preference Indices indicated that the n-alkanes were mainly derived from bacteria or algae. For GDGTs, the predominance of GDGT-0 and crenarchaeol, together with low GDGT-0/Crenarchaeol ratios(ranging from0.86 to 1.64), suggests that the GDGTs in samples from the southern Mariana Trench were mainly derived from planktic Thaumarchaeota. However, the high GDGT-0/crenarchaeol ratio(10.5) in sample BC07 suggests that the GDGTs probably were introduced by methanogens in a more anoxic environment. Furthermore, the n-alkanes C_(19)-C_(22) and the n-fatty acids C_(20:0)-C_(22:0) were depleted in~(13)C by 3‰ compared to n-alkanes C_(16)-C_(18) and the n-fatty acids C_(14:0)-C_(18:0), respectively, which was interpreted to result from the preferential reaction of fatty acid fragments with carbon "lighter" terminal carboxyl groups during carbon chain elongation from the precursors to products. The abundance of total alkanes, carboxylic acids, alcohols and total lipids were generally increased along the down-going seaward plate, suggesting the lateral organic matter inputs play an important role in organic matter accumulation in hadal trenches. The extremely high contents of biomarkers in sample BC11 were most likely related to trench topography and current dynamics, since the lower steepness caused by graben texture and proximity to the trench axis may result in higher sedimentation rate. This paper, for the first time, showed the biomarker patterns in surface sediments of the Mariana Trench and shed light on biogeochemistry of the hardly reached trench environment.
引文
Bieger, T., 1994. Molecular and Isotopic Fingerprinting of Aliphatic Hydrocarbons in Conception Bay, Nfld. MSc thesis. Memorial University of Newfoundland, St Johns, Nfld, Canada.
    Blaga, C.I., Reichart, G.J., Heiri, O., Sinninghe Damste, J.S., 2009. Tetraether membrane lipid distributions in water-column particulate matter and sediments:a study of 47 European lakes along a north-south transect. Journal of Paleolimnology 41, 523-540.
    Boutton, T.W., 1991. Stable carbon isotope ratio of natural materials, II. Atmospheric,terrestrial, marine, and freshwater environments. In:Coleman, D.C., Fry, B.(Eds.), Carbon Isotope Techniques. Academic Press, San Diego, Calif.,pp. 173-185
    Clark, M.R., Rowden, A.A., Schlacher, T., Williams, A., Consalvey, M., Stocks, K.I.,Rogers, A.D., O'Hara, T.D., White, M., Shank, T.M., Hall-Spencer, J.M., 2010. The ecology of seamounts:structure, function, and human impacts. Annual Review of Marine Science 2, 253-278.
    Cranwell. P.A., 1982. Lipids of aquatic sediments and sedimenting particulates.Progress in Lipid Research 21, 271-308.
    Danovaro, R., Gambi, C., Della Croce, N.. 2002. Meiofauna hotspot in the Atacama Trench, eastern south Pacific Ocean. Deep-Sea Research PartⅠ49, 843-857.
    Danovaro, R., Della Croce, N., Dell'Anno, A., Pusceddu, A., 2003. A depocenter of organic matter at 7800m depth in the SE Pacific Ocean. Deep-Sea Research PartⅡ50,1411-1420.
    De Grande,S.M.B., Aquino Neto, F.R., Mello, M.R., 1993. Extended tricyclic terpanes in sediments and petroleum. Organic Geochemistry 20,1039-1047.
    Degens, E.T., 1969. Biogeochemistry of stable carbon isotopes. In:Eglinton, G.,Murphy, M.T.J.(Eds.), Organic Geochemistry Methods and Results. Springer,New York, pp. 304-329.
    Duineveld, G.C.A., Lavaleye, M.S.S., Berghuis, E.M., 2004. Particle flux and food supply to a seamount cold-water coral community(Galicia Bank, NW Spain).Marine Ecology Progress Series 227,13-23.
    Ekpo, B.O., Oyo-Ita, O.E., Wehner, H., 2005. Even-n-alkane/alkene predominances in surface sediments from the Calabar River, SE Niger Delta, Nigeria. Naturwissenschaften 92, 341-346.
    Elias, V.O., Simoneit, B.R.T., Cardoso,J.N., 1997. Even n-alkane predominances on the Amazon Shelf and a Northeast Pacific hydrothermal system. Naturwissenschaften 84, 415-420.
    Ezra, S., Feinstein, S., Pelly, I., Bauman, D., Miloslavsky, I., 2000. Weathering of fuel oil spill on the east Mediterranean coast, Ashdod, Israel. Organic Geochemistry31,1733-1741.
    Fang, J., Abrajano, T.A., Comet, P., Brooks, J.M., MacDonald, I., 1993. Gulf of Mexico hydrocarbon seep communities:XI. Carbon isotopic fractionation during fatty acid biosynthesis of seep organisms and its implication for chemosynthetic processes. Chemical Geology 109, 217-279.
    Fang, J., Barcelona, M.J., Nogi, Y., Kato, C., 2000. Biochemical implications and geochemical significance of novel phospholipids of the extremely barophilic bacteria from the Marianas Trench at 11,000m. Deep Sea Research PartⅠ47,1173-1182.
    Fang, J., Barcelona, M.J., Abrajano, T., Nogi, Y., Kato, C., 2002. Isotopic composition of fatty acids of extremely piezophilic bacteria from the Mariana Trench at 11,000m. Marine Chemistry 80,1-9.
    Farrington, J.W., Quinn, J.G., 1973. Petroleum hydrocarbons in Narragansett BayⅠ:survey of hydrocarbons in sediments and clams(Mercenaria mercenaria).Estuarine and Coastal Marine Science 1, 71-79.
    Farrington, J.W., Quinn, J.G.,2015."Unresolved Complex Mixture"(UCM):a brief history of the term and moving beyond it. Marine Pollution Bulletin 96,29-31.
    Feng, D.,Birgel,D.,Peckmann, J., Roberts, H.H., Joye, S.B., Sassen, R., Liu, X.L.,Hinrichs, K.-U., Chen, D., 2014. Time integrated variation of sources of fluids and seepage dynamics archived in authigenic carbonates from Gulf of Mexico gas hydrate seafloor observatory. Chemical Geology 385,129-139.
    Fisher, C.R., KennicuttⅡ, M.C., Brooks, J.M., 1990. Stable isotopic evidence for carbon limitation in hydrothermal vent vestimentiferans. Science 247,1094-1096.
    Fryer, P., 1996. Evolution of the Mariana convergent plate margin system. Reviews of Geophysics 34(1), 89-125.
    Fryer, P., Becker, N., Appelgate, B., Martinez, F., Edwards, M.,Fryer, G., 2003. Why is the challenger deep so deep? Earth and Planetary Science Letters 211, 259-269.
    Fujioka, K., Okino, K., Kanamatsu, T., Ohara, Y., 2002. Morphology and origin of the Challenger Deep in the southern Mariana Trench. Geophysical Research Letters29(10),10-1-10-14.
    Gardner, J.V., Armstrong, A.A., 2011. The Mariana Trench:a new view based on multibeam echosounding. In:AGU Fall Meeting 2011. American Geophysical Union, San Fransisco, CA. Abstract#OS13B-1517.
    Glud, R.N., Wenzhofer, F., Middelboe, M., Oguri, K., Turnewitsch, R., Canfield, D.E.,Kitazato, H., 2013. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nature Geoscience 284-288.
    Gough, M.A., Rowland, S.J., 1990. Characterization of unresolved complex mixtures of hydrocarbons in petroleum. Nature 344, 648-650.
    Grimalt, J.O., Albaiges, J., 1987. Sources and occurrence of C12-C22 n-alkane distributions with even carbon-number preference in sedimentary environments.Geochimica et Cosmochimica Acta 51,1379-1384.
    Grimalt,J.O., Albaiges,J., 1990. Characterization of the depositional environments of the Ebro Delta(Western Medditerranean)by the study of sedimentary lipid markers. Marine Geology 95, 207-224.
    Grimalt, J.O., Albaiges, J., Al-saad, H.T., Douabul, A.A.Z., 1985. n-Alkane distributions in surface sediments from the Arabian Gulf. Naturwissenschaften 72, 35-37.
    Guan, H., Feng, D., Wu, N., Chen, D., 2016. Methane seepage intensities traced by biomarker patterns in authigenic carbonates from the South China Sea. Organic Geochemistry 91,109-119.
    Gvirtzman, Z., Stern, R.J., 2004. Bathymetry of Mariana trench-arc system and formation of the Challenger Deep as a consequence of weak plate coupling. Tectonics 23(23), 117-128.
    Han, J., Calvin, M., 1969. Occurrence of C22-C25 isoprenoids in Bell Creek crude oil.Geochimica et Cosmochimica Acta 33, 783-742.
    Hayes, J.M., Freeman, K.H., Popp, B.N., Hopham, C.H., 1990. Compound-specific isotope analyses:a novel tool for reconstruction of ancient biogeochemical processes. Organic Geochemistry 16,1125-1128.
    Herfort, L., Schouten, S., Veldhuis, M., Coolen,M.J.L., Wuchter, C., Boon, J.P.,Herndl, G.J., Sinninghe Damste, J.S., 2007. Ecology and physiology of marine Archaea in the North Sea. FEMS Microbiology Ecology 62, 242-257.
    Hu, J., Zhou, H., Peng, P., Yang, X., Spiro, B., Jia, G., Wei, G., Ouyang, T., 2015.Reconstruction of a paleotemperature record from 0.3-3.7 ka for subtropical South China using lacustrine branched GDGTs from Huguangyan Maar. Palaeogeography, Palaeoclimatology, Palaeoecology 435, 167-176.
    Hu, J., Zhou, H., Peng, P., Spiro, B., 2016. Seasonal variability in concentrations and fluxes of glycerol dialkyl glycerol tetraethers in Huguangyan Maar Lake, SE China:implications for the applicability of the MBT-CBT paleotemperature proxy in lacustrine settings. Chemical Geology 420, 200-212.
    Ichino, M.C., Clark, M.R., Drazen, J.C., Jamieson, A., Jones, D.O., Martin, A.P.,Rowden, A.A., Shank, T.M., Yancey, P.H., Ruhl, H.A., 2015. The distribution of benthic biomass in hadal trenches:a modelling approach to investigate the effect of vertical and lateral organic matter transport to the seafloor. Deep-Sea Research PartⅠ100, 21-33.
    Ishibashi,J.-i., Tsunogai, U., Told, T., Ebina, N.,Gamo, T., Sano, Y., Masuda, H.,Chiba, H., 2015. Chemical composition of hydrothermal fluids in the central and southern Mariana Trough backarc basin. Deep-Sea Research PartⅡ121,126-136.
    Itoh, M., Kawamura, K., Kitahashi, T., Kojima, S., Katagiri, H., Shimanaga, M., 2011.Bathymetric patterns of meiofaunal abundance and biomass associated withthe Kuril and Ryukyu trenches, western North Pacific Ocean. Deep Sea Research PartⅠ58, 86-97.
    Itou, M., Matsumura, I., Noriki, S., 2000. A large flux of particulate matter in the deep Japan Trench observed just after the 1994 Sanriku-Oki earthquake. Deep Sea Research PartⅠ47,1987-1998.
    Jahnke, R.A.,Jahnke, D.B., 2000. Rates of C, N, P and Si recycling and denitrification at the US Mid-Atlantic continental slope depocenter. Deep Sea Research PartⅠ47, 1405-1428.
    Jamieson, A.J., Fujii, T., Mayor, D.J., Solan, M., Priede, I.G., 2010. Hadal trenches:the ecology of the deepest places on Earth. Trends in Ecology&Evolution 25,190-197.
    Jia, G., Zhang, J., Chen, J., Peng, P., Zhang, C.L., 2012. Subsurface water temperatures recorded by archaeal tetraether lipids in the South China Sea. Organic Geochemistry 50, 68-77.
    Johns, R.B., Brady, B.A., Butler, M.S., Dembitsky, V.M., Smith, J.D., 1994. Organic geochemical and geochemical studies of Inner Great Barrier Reef sediments-Ⅳ.Identification of terrigenous and marine sourced inputs. Organic Geochemistry21,1027-1035.
    Jovancicevic, B., Polic, P., Vitorovic, D., Scheeder, G., Teschner, M., Wehner, H., 2001.Biodegradation of oil-type pollutants in Danube alluvial sediments(Yugoslavia). Fresenius Environmental Bulletin 10,178-182.
    Jurdy, D.M., 1979. Relative plate motions and the formation of marginal basins.Journal of Geophysical Research:Solid Earth 84, 6796-6802.
    Kates, M., Kushner, D.J., Matheson, A.T., 1993. The Biochemistry of Archaea(Archaebacteria). Elsevier Science Publishers, Amsterdam.
    Koga, Y., Akagawa-Matsusita, M., Ohga, M., Nishihara, M., 1993. Taxonomic significance of the distribution of component parts of polar ether lipids in methanogens. Systematic and Applied Microbiology 16, 342-351.
    Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W., Prosser, J.I.,Schuster, S.C., Schleper, C., 2006. Archaea predominate among ammoniaoxidizing prokaryotes in soils. Nature 442, 806-809.
    Liu, X., Wang, Z., Ma, X., Ding, L., Xu, H., Yao, Z., 2011. Extraction of the diesel fingerprints and hierarchical clustering analysis of diesel based on fingerprint information. Environmental Pollution&Control 33, 17-22(in Chinese with English abstract).
    Luo, M., Gieskes, J., Chen, L, Shi, X., Chen, D., 2017. Provenances(marine vs.terrestrial), distribution, and accumulation of organic matter in the southern Mariana Trench rim and slope:implication for the organic matter degradation and burial in hadal trenches. Marine Geology 386, 98-106.
    Mejanelle, L., Sanchez-Gargallo, A., Bentaleb, I., Grimalt, J.O., 2003. Long chain nalkyl diols, hydroxyl ketones and sterols in a marine eustigmatophyte, Nannochloropsis gaditana, and in Brachionus plicatilis feeding on the algae. Organic Geochemistry 34, 527-538.
    Meyers, P.A., 2003. Applications of organic geochemistry to paleolimnological reconstructions:a summary of examples from the Laurentian Great Lakes.Organic Geochemistry 34, 261-289.
    Meyers, P.A., Eadie, B.J., 1993. Sources, degradation and recycling of organic matter associated with sinking particles in lake Michigan. Organic Geochemistry 20,47-56.
    Mille, G., Asia, L., Guiliano, M., Malleret, L., Doumenq, P., 2007. Hydrocarbons in coastal sediments from the Mediterranean sea(Gulf of Fos area, France). Marine Pollution Bulletin 54, 566-575.
    Monson, K.D., Hayes, J.M., 1981. Biosynthetic control of the natural abundance of carbon 13 at specific positions within fatty acids in Escherichia coli. Journal of Biological Chemistry 255,11435-11441.
    Monson, K.D., Hayes, J.M., 1982. Carbon isotopic fractionation in the biosynthesis of bacterial fatty acids. Ozonolysis of unsaturated fatty acids as a means of determining the intramolecular distribution of carbon isotopes. Geochimica et Cosmochimica Acta 46,139-149.
    Naehr, T.H., Birgel, D., Bohrmann, G., MacDonald, I.R., Kasten, S., 2009. Biogeochemical controls on authigenic carbonate formation at the Chapopote"asphalt volcano",Bay of Campeche. Chemical Geology 266, 390-402.
    Nishimura, M., Baker, E.W., 1986. Possible origin of n-alkanes with a remarkable even-to-odd predominance in recent marine sediments. Geochimica et Cosmochimica Acta 50, 299-305.
    Nunoura, T., Takaki, Y., Hirai, M., Shimamura, S., Makabe, A., Koide, 0., Kikuchi, T.,Miyazaki, J., Koba, K., Yoshida, N., 2015. Hadal biosphere:Insight into the microbial ecosystem in the deepest ocean on Earth. Proceedings of the National Academy of Sciences of the United States of America 112,E1230-E1236.
    Ogura, K., Machihara, T., Takada, H., 1990. Diagenesis of biomarkers in Biwa Lake sediments over 1 million years. Organic Geochemistry 16, 805-813.
    Pagani, M., Freeman, K.H., Arthur, M.A., 2000. Isotope analyses of molecular and total organic carbon from Miocene sediments. Geochimica et Cosmochimica Acta 64, 37-49.
    Pearson, M.J., Obaje, N.G., 1999. Onocerane and other triterpenoids in late Cretaceous sediments from the Upper Benue Trough, Nigeria:tectonic and palaeoenvironmental implications. Organic Geochemistry 30, 583-592.
    Philp, R.P., Fan, Z., 1987. Geochemical investigation of oils and source rocks from Qianjing depression of Jianhan Basin, a terrigenous saline basin, China. Organic Geochemistry 11, 549-562.
    Pitcher, A., Rychlik, N., Hopmans, E.C., Spieck, E., Rijpstra, W.I.C., Ossebaar, J.,Schouten, S., Wagner, M., Sinninghe Damste, J.S., 2010. Crenarchaeol dominates the membrane lipids of candidatus Nitrososphaera gargensis, a thermophilic groupⅠ.1b archaeon. The ISME Journal 4, 542-552.
    Pitcher, A., Hopmans, E.C., Mosier, A.C., Francis, C.A., Reese, S.K., Schouten, S., Sinninghe Damste, J.S., 2011. Distribution of core and intact polar tetraether lipids in enrichment cultures of Thaumarchaeota from marine sediments. Applied and Environment Microbiology 77, 3468-3477.
    Reagan, M.K., Ishizuka,O.,Stern, R.J., Kelley, K.A., Ohara, Y., Blichert-Toft, J.,Bloomer, S.H., Cash, J., Fryer, P., Hanan, B.B.. 2013. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system. Geochemistry, Geophysics.Geosystems 11, 427-428.
    Rex, M.A, Etter, R.J., Morris, J.S., Crouse, J., McClain, C.R.. Johnson, N.A.. Stuart, C.T.,Deming,J.W., Thies, R., Avery, R., 2006. Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Marine Ecology Progress Series317, 1-8.
    Richardson, M.D., Briggs, K.B., Bowles, F.A., Tietjen, J.H., 1995. A depauperate benthic assemblage from the nutrient-poor sediments of the Puerto-Rico Trench. Deep Sea Research PartⅠ42, 351-364.
    Robinson, N., Cranwell, P.A., Finlay, B.J., Eglinton, G., 1984. Lipids of aquatic organisms as potential contributors to lacustrine sediments. Organic Geochemistry 6,143-152.
    Rowe, G.T., 1983. Biomass and production of the deep-sea macrobenthos. In:Rowe, G.T.(Ed.), The Sea, vol. 8. Wiley-Interscience, New York, pp. 97-121.
    Sassen, R., MacDonald, I.R., Requejo,A.G.,Guinasso, J.N.L.,Kennicutt, M.C.,Sweet, S.T., Brooks, J.M., 1994. Organic geochemistry of sediments from chemosynthetic communities, Gulf of Mexico slope. Geo-Marine Letters 14,110-119.
    Schouten, S., Hopmans, E.C., Schefuβ, E., Sinninghe Damste,J.S.,2002. Distributional variations in marine crenarchaeotal membrane lipids:a new organic proxy for reconstructing ancient sea water temperatures? Earth and Planetary Science Letters 204, 265-274.
    Schouten, S., Hopmans, E.C., Sinninghe Damste, J.S., 2013. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids:a review. Organic Geochemistry 54,19-61.
    Seno, T., Maruyama, S., 1984. Paleogeographic reconstruction and origin of the Philippine Sea. Tectonophysics 102, 53-84.
    Simoneit, B.R.T., 1994. In:Mottl, M.J., et al.(Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, vol. 139. College Station, p. 447.
    Sinninghe Damste, J.S., Schouten, S., Hopmans, E.C., van Duin, A.C.T.,Geenevasen,J.A.J., 2002. Crenarchaeol:the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. Journal of Lipid Research 43,1641-1651.
    Sun, M.Y., Wakeham, S.G., 1994. Molecular evidence for degradation and preservation of organic matter in the anoxic Black Sea basin. Geochimica et Cosmochimica Acta 58, 3395-3406.
    Taira, K., Kitagawa, S., Yamashiro, T., Yanagimoto, D., 2004. Deep and bottom currents in the Challenger Deep, Mariana Trench, measured with super-deep current meters. Journal of Oceanography 60(6), 919-926.
    Taira, K., Yanagimoto, D., Kitagawa, S., 2005. Deep CTD casts in the Challenger Deep,Mariana Trench. Journal of Oceanography 61(3), 447-454.
    Tao, S., Wang, C., Du, J., Liu, L., Chen, Z., 2015. Geochemical application of tricyclic and tetracyclic terpanes biomarkers in crude oils of NW China. Marine and Petroleum Geology 67, 460-467.
    Taylor, J., Young, C., Parkes, R.J., Egtinton, T., Douglas, A.G., 1984. Structural relationships in protokerogens and other geopolymers from oxic and anoxic sediments. In:Schenck, P.A., de Leeuw,J.W., Lijmbach, G.W.M.(Eds.), A-h'ances in Organic Geochemistry 1983, Organic Geochemistry, vol. 6. Pergamon Press,Oxford, pp. 279-286.
    Ten Haven, H.L., De Leebw, J.W., Sinninghe Damste, J.S., Schenck, P.A., 1988. Application of biological markers in the recognition of palaeohypersaline environments. Geological Society London Special Publications 40,123-130.
    Tietjen, J.H., Deming, J.W., Rowe, G.T., Macko, S., Wilke, R.J., 1989. Meiobenthos of the Hatteras abyssal-plain and Puerto-Rico trench-abundance, biomass and association with bacteria and particulate fluxes. Deep Sea Research PartⅠ36,1567-1577.
    Turnewitsch, R., Falahat, S., Stehlikova, J., Oguri, K., Glud, R.N., Middelboe, M.,Kitazato, H., Wenzhoefer, F., Ando, K., Fujio, S., 2014. Recent sediment dynamics in hadal trenches:Evidence for the influence of higher-frequency(tidal, nearinertial)fluid dynamics. Deep Sea Research PartⅠ90,125-138.
    Venkatesan, M.I., 1988. Organic geochemistry of marine sediments in Antarctic region:marine lipids in McMurdo Sound. Organic Geochemistry 12,13-27.
    Volkman,J.K., Johns, R.B., Gillan, F.T., Perry, G.J., Bavor Jr., H.J., 1980. Microbial lipids of an intertidal sediment-Ⅰ. Fatty acids and hydrocarbons. Geochimica et Cosmochimica Acta 44,1133-1143.
    Volkman, J.K., Jeffrey, S.W., Nichols, P.D., Rogers, G.I., Garland, C.D., 1988. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. Journal of Experimental Marine Biology and Ecology 128, 219-240.
    Volkman, J.K., Barrett, S.M., Dunstan, G.A., Jeffrey, S.W., 1992. C30-C32 alkyl diols and unsaturated alcohols in microalgae of the class Eustigmatophyceae. Organic Geochemistry 18,131-138.
    Wake ham, S.G., Farrington, J.W., 1980. Hydrocarbons in contemporary aquatic sediments. In:Baker, R.A.(Ed.), Contaminants and SedimentsⅠ. Ann Arbor Science Publishers, Ann Arbor of Michigan, pp. 3-32.
    Wolff, T., 1970. Concept of hadal or ultra-abyssal fauna. Deep Sea Research 17,983-1003.
    Zegouagh, Y., Derenne, s., Largeau, C., Saliot, A., 1996. Organic matter sources and early diagenetic alterations in Arctic surface sediments(Lena River delta and Laptec Sea, Eadtern Siberia)-I. Analysis of the carboxylic acids released via seguential treatments. Organic Geochemistry 24, 841-857.
    Zhang, C., Pancost, R.D., Sassen, R., Qian, Y., Macko, S.A., 2003. Archaeal lipid biomarkers and isotopic evidence of anaerobic methane oxidation associated with gas hydrates in the Gulf of Mexico. Organic Geochemistry 34, 827-836.
    Zhang, C.L., Pearson, A., Li, Y.L., Mills, G., Wiegel, J., 2006. Thermophilic temperature optimum for crenarchaeol synthesis and its implication for archaeal evolution.Applied and Environmental Microbiology 72, 4419-4422.
    Zhang, Y.G., Zhang, C.L., Liu, X.,Li, L., Hinrichs,K.-U.,Noakes, J.E.,2011. Methane index:a tetraether archaeal lipid biomarker proxy for detecting the instability of marine gas hydrates. Earth and Planetary Science Letters 307, 525-534.
    Zhu, X., Mao, S., Wu, N., Sun, Y., Guan, H., 2014. Molecular and stable carbon isotopic compositions of saturated fatty acids within one sedimentary profile in the Shenhu, northern South China Sea:source implications. Journal of Asian Earth Sciences 92, 262-275.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700