用户名: 密码: 验证码:
Campaign-style U-Pb titanite petrochronology:Along-strike variations in timing of metamorphism in the Himalayan metamorphic core
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Campaign-style U-Pb titanite petrochronology:Along-strike variations in timing of metamorphism in the Himalayan metamorphic core
  • 作者:Catherine ; M.Mottram ; John ; M.Cottle ; Andrew ; R.C.Kylander-Clark
  • 英文作者:Catherine M.Mottram;John M.Cottle;Andrew R.C.Kylander-Clark;School of Earth and Environmental Sciences, University of Portsmouth;Department of Earth Science, University of California;
  • 英文关键词:Himalaya;;Petrochronology;;Titanite;;Metamorphic petrology
  • 中文刊名:Geoscience Frontiers
  • 英文刊名:地学前缘(英文版)
  • 机构:School of Earth and Environmental Sciences, University of Portsmouth;Department of Earth Science, University of California,Santa Barbara;
  • 出版日期:2019-05-15
  • 出版单位:Geoscience Frontiers
  • 年:2019
  • 期:03
  • 基金:funded by a UK-US all-discipline Fulbright commission scholarship awarded to C.Mottram and UCSB funds to J. Cottle
  • 语种:英文;
  • 页:41-61
  • 页数:21
  • CN:11-5920/P
  • ISSN:1674-9871
  • 分类号:P588.3;P597.3
摘要
Present-day along-strike heterogeneities within the Himalayan orogen are seen at many scales, from variations within the deep architecture of the lithospheric mantle, to differences in geomorphologic surface processes. Here, we present an internally consistent petrochronologic dataset from the Himalayan metamorphic core(HMC), in order to document and investigate the causes of along-strike variations in its Oligocene-Miocene tectonic history. Laser ablation split-stream analysis was used to date and characterise the geochemistry of titanite from 47 calc-silicate rocks across >2000 km along the Himalaya.This combined U-Pb-REE-Zr single mineral dataset circumvents uncertainties associated with interpretations based on data compilations from different studies, mineral systems and laboratories, and allows for direct along-strike comparisons in the timing of metamorphic processes. Titanite dates range from ~30 Ma to 12 Ma, recording(re-)crystallization between 625 ℃ and 815 ℃. Titanite T-t data overlap with previously published P-T-t paths from interleaved peltic rocks, demonstrating the usefulness of titanite petrochronology for recording the metamorphic history in lithologies not traditionally used for thermobarometry. Overall, the data indicate a broad eastward-younging trend along the orogen.Disparities in the duration and timing of metamorphism within the HMC are best explained by alongstrike variations in the position of ramps on the basal detachment controlling a two-stage process of preferential ductile accretion at depth followed by the formation of later upper-crust brittle duplexes.These processes, coupled with variable erosion, resulted in the asymmetric exhumation of a younger,thicker crystalline core in the eastern Himalaya.
        Present-day along-strike heterogeneities within the Himalayan orogen are seen at many scales, from variations within the deep architecture of the lithospheric mantle, to differences in geomorphologic surface processes. Here, we present an internally consistent petrochronologic dataset from the Himalayan metamorphic core(HMC), in order to document and investigate the causes of along-strike variations in its Oligocene-Miocene tectonic history. Laser ablation split-stream analysis was used to date and characterise the geochemistry of titanite from 47 calc-silicate rocks across >2000 km along the Himalaya.This combined U-Pb-REE-Zr single mineral dataset circumvents uncertainties associated with interpretations based on data compilations from different studies, mineral systems and laboratories, and allows for direct along-strike comparisons in the timing of metamorphic processes. Titanite dates range from ~30 Ma to 12 Ma, recording(re-)crystallization between 625 ℃ and 815 ℃. Titanite T-t data overlap with previously published P-T-t paths from interleaved peltic rocks, demonstrating the usefulness of titanite petrochronology for recording the metamorphic history in lithologies not traditionally used for thermobarometry. Overall, the data indicate a broad eastward-younging trend along the orogen.Disparities in the duration and timing of metamorphism within the HMC are best explained by alongstrike variations in the position of ramps on the basal detachment controlling a two-stage process of preferential ductile accretion at depth followed by the formation of later upper-crust brittle duplexes.These processes, coupled with variable erosion, resulted in the asymmetric exhumation of a younger,thicker crystalline core in the eastern Himalaya.
引文
Adams, B.A., Whipple, K.X., Hodges, K.V., Heimsath, A.M., 2016. In situ development of high-elevation, low-relief landscapes via duplex deformation in the Eastern Himalayan hinterland, Bhutan. Journal of Geophysical Research:Earth Surface121, 294-319. https://doi.org/10.1002/2015JF003508.
    Aleinikoff, J.N., Wintsch, R.P., Fanning, C.M., Dorais, M.J., 2002. U-Pb geochronology of zircon and polygenetic titanite from the Glastonbury Complex, Connecticut,USA:an integrated SEM, EMPA, TIMS, and SHRIMP study. Chemical Geology 188(1-2), 125-147.
    Ambrose, T.K., Larson, K.P., Guilmette, C., Cottle, J.M., Buckingham, H., Rai, S., 2015.Lateral extrusion, underplating, and out-of-sequence thrusting within the Himalayan metamorphic core, Kanchenjunga, Nepal. Lithosphere 1-25. https://doi.org/10.1130/L437.1.
    Banerjee, P., Burgmann, R., Nagarajan, B., Apel. E., 2008. Intraplate deformation of the Indian subcontinent. Geophysical Research Letters 35,1-5. https://doi.org/10.1029/2008GL035468.
    Beaumont, C., Jamieson, R.A., Nguyen, M.H., Lee, B., 2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation, Nature 414(6865), 738.
    Berger, A., Jouanne, F., Hassani, R., Mugnier, J.L, 2004. Modelling the spatial distribution of present-day deformation in Nepal:How cylindrical is the Main Himalayan Thrust in Nepal-? Geophysical Journal International 156, 94-114.https://doi.org/10.1111/j.1365-246X.2004.02038.x.
    Bookhagen, B., Burbank, D.W., 2010. Toward a complete Himalayan hydrological budget:Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. Journal of Geophysical Research:Earth Surface 115, 1-25.https://doi.org/10.1029/2009JF001426.
    Braden, Z., Godin, L., Cottle, J.M., 2017. Segmentation and rejuvenation of the Greater Himalayan sequence in western Nepal revealed by in situ U-Th/Pb monazite petrochronology. Lithos 284, 751-765.
    Burgess, P.W., Yin, A., Dubey, C.S., Shen, Z.K., Kelty, T.K., 2012. Holocene shortening across the main frontal thrust zone in the eastern Himalaya. Earth and Planetary Science Letters 357-358. 152-167. https://doi.org/10.1016/j.epsl.2012.09.040.
    Catlos, E.J., Dubey, C.S., Harrison, T.M., Edwards, M.A., 2004. Late Miocene movement within the Himalayan main central thrust shear zone, Sikkim, north-east India. Journal of Metamorphic Geology 22(3), 207-226.
    Catlos, E.J., Harrison, T.M., Kohn, M.J., Grove, M., Ryerson, F.J., Manning, C.E.,Upreti, B.N., 2001. Geochronologic and thermobarometric constraints on the evolution of the Main Central Thrust, central Nepal Himalaya. Journal of Geophysical Research:Solid Earth 106(B8), 16177-16204.
    Carosi, R., Montomoli, C, Visona, D., 2007. A structural transect in the Lower Dolpo:Insights on the tectonic evolution of Western Nepal. Journal of Asian Earth Sciences 29(2-3), 407-423.
    Carosi, R., Montomoli, C., Rubatto, D., Visong, D., 2010. Late Oligocene high temperature shear zones in the core of the Higher Himalayan Crystallines(Lower Dolpo, western Nepal). Tectonics 29(4).
    Carosi, R., Montomoli, C., Langone, A., Turina, A., Cesare, B., Iaccarino, S., Ronchi, A.,2015. Eocene partial melting recorded in peritectic garnets from kyanite-gneiss,Greater Himalayan Sequence, central Nepal. Geological Society, London, Special Publications 412(1), 111-129.
    Carosi, R., Montomoli, C.,Iaccarino, S., Massonne, H.J., Rubatto, D., Langone, A., et al.,2016. Middle to late Eocene exhumation of the Greater Himalayan Sequence in the Central Himalayas:Progressive accretion from the Indian plate. Bulletin 128(11-12), 1571-1592.
    Carosi, R., Montomoli, C., laccarino, S., 2017. 20 years of geological mapping of the metamorphic core across Central and Eastern Himalayas. Earth-Science Reviews 177,124-138.
    Carrapa, B., Robert, X., DeCelles, P.G., Orme, D.A., Thomson, s. N., Schoenbohm, L.M.,2016. Asymmetric exhumation of the Mount Everest region:Implications for the tectono-topographic evolution of the Himalaya. Geology 44(8), 611-614.
    Chambers, J.A., Argles, T.W., Horstwood, M.S.A., Harris, N.B.W., Parrish, R.R.,Ahmad, T., 2008. Tectonic implications of Palaeoproterozoic anatexis and Late Miocene metamorphism in the Lesser Himalayan Sequence, Sutlej Valley, NW India. Journal of the Geological Society 165(3), 725-737.
    Chen, B.,Liu, J., Chen, C., Du.J, Sun, Y., 2015. Elastic thickness of the Himalayan-Tibetan orogen estimated from the fan wavelet coherence method,and its implications for lithospheric structure. Earth and Planetary Science Letters 409.1-14. https://doi.org/10.1016/j.epsl.2014.10.039.
    Cherniak, D.J., 1993. Lead diffusion in titanite and preliminary results on the effects of radiation damage on Pb transport. Chemical Geology 110,177-194. https://doi.org/10.1016/0009-2541(93)90253-F.
    Cherniak, D.J., 2006. Zr diffusion in titanite. Contributions to Mineralogy and Petrology 152(5), 639-647.
    Cooper, F.J., Adams, B.A., Edwards, C.S., Hodges, K.V., 2012. Large normal-sense displacement on the South Tibetan fault system in the eastern Himalaya. Geology 40(11), 971-974.
    Cooper, F.J., Hodges, K.V., Parrish, R.R., Roberts, N.M.W., Horstwood, M.S.A., 2015.Synchronous N S and E W extension at the Tibet to Himalaya transition in NW Bhutan. Tectonics 34(7), 1375-1395.
    Corrie, S.L, Kohn, M.J., 2011. Metamorphic history of the central Himalaya, Annapurna region, Nepal, and implications for tectonic models. Bulletin 123(9-10),1863-1879.
    Cottle, J.M., Larson, K.P., Kellett, D.A., 2015a. How does the mid-crust accommodate deformation in large, hot collisional orogens? A review of recent research in the Himalayan orogen. Journal of Structural Geology 78,119-133. https://doi.org/10.1016/j.jsg.2015.06a008.
    Cottle, J.M., Searle, M.P., Horstwood, M.S., Waters, D.J., 2009. Timing of midcrustal metamorphism, melting, and deformation in the Mount Everest region of southern Tibet revealed by U(-Th)-Pb geochronology. The Journal of Geology117(6), 643-664.
    Cottle, J.M., Searle, M.P., Jessup, M.J., Crowley, J.L, Law, R.D., 2015b. Rongbuk revisited:Geochronology of leucogranites in the footwall of the South Tibetan detachment system, Everest region, southern Tibet. Lithos 227,94-106.
    Coutand, I., Whipp, D.M., Grujic, D., Bernet, M., Fellin, M.G., Bookhagen, B.,Landry, K.R., Ghalley, S.K., Duncan, C., 2014. Geometry and kinematics of the Main Himalayan Thrust and Neogene crustal exhumation in the Bhutanese Himalaya derived from inversion of multithermochronologic data. Journal of Geophysical Research:Solid Earth 119, 1446-1481. https://doi.org/10.1002/2013JB010891.
    Daniel, C.G., Hollister, LS., Parrish, R.T, Grujic, D., 2003. Exhumation of the Main Central Thrust from lower crustal depths, eastern Bhutan Himalaya. Journal of Metamorphic Geology 21(4), 317-334.
    Dasgupta, S., Ganguly, J., Neogi, S., 2004. Inverted metamorphic sequence in the Sikkim Himalayas:crystallization history, P-T gradient and implications. Journal of Metamorphic Geology 22(5), 395-412.
    Davis, D., Suppe, J., Dahlen, F.A., 1983. Mechanics of fold-and-thrust belts and accretionary wedges. Journal of Geophysical Research:Solid Earth 88(B2),1153-1172.
    DeCelles, P.G., Gehrels, G.E., Quade, J., Ojha, T.P., 1998. Eocene-early Miocene foreland basin development and the history of Himalayan thrusting, western and central Nepal. Tectonics 17(5), 741-765.
    DeCelles, P.G., Carrapa, B., Gehrels, G.E., Chakraborty, T., Ghosh, P., 2016. Alongstrike continuity of structure, stratigraphy, and kinematic history in the Himalayan thrust belt:The view from Northeastern India. Tectonics 35(12),2995-3027.
    Duncan, C., Masek, J., Fielding, E., 2003. How steep are the Himalaya? Characteristics and implications of along-strike topographic variations. Geology31, 75-78. https://doi.org/10.1130/0091-7613(2003)031 <0075:HSATHC>2.0.CO;2.
    Edwards, M.A., Harrison, T.M., 1997. When did the roof collapse? Late Miocene north-south extension in the high Himalaya revealed by Th-Pb monazite dating of the Khula Kangri granite. Geology 25(6), 543-546.
    Engi, M., Lanari, P., Kohn, M.J., 2017. Significant ages-An introduction to petrochronology. Reviews in Mineralogy and Geochemistry 83(1):1-12.
    From, R., Larson, K., Cottle, J.M., 2014. Metamorphism and geochronology of the exhumed Himalayan midcrust, Likhu Khola region, east-central Nepal:Recognition of a tectonometamorphic discontinuity. Lithosphere 6(5),361-376.
    Frost. B.R., Chamberlain, K.R., Schumacher, J.C., 2001. Sphene(titanite):phase relations and role as a geochronometer. Chemical Geology 172(1-2), 131-148.
    Gahalaut, V.K., Kundu, B., 2012. Possible influence of subducting ridges on the Himalayan arc and on the ruptures of great and major Himalayan earthquakes. Gondwana Research 21, 1080-1088. https://doi.org/10.1016/j.gr.2011.07.021.
    Gao, X.Y., Zheng, Y.F., Chen, Y.X., Guo, J., 2012. Geochemical and U-Pb age constraints on the occurrence of polygenetic titanites in UHP metagranite in the Dabie orogen. Lithos 136, 93-108.
    Garber, J.M., Hacker, B.R., Kylander-Clark, A.R.C., Steams, M., Seward, G., 2017.Controls on Trace Element Uptake in Metamorphic Titanite:Implications for Petrochronology. Journal of Petrology 58(6), 1031-1057.
    Gebelin, A., Jessup, M.J., Teyssier, C., Cosca, M.A., Law, R.D., Brunei, M., et al., 2017.Infiltration of meteoric water in the South Tibetan Detachment(Mount Everest,Himalaya):when and why? Tectonics 36(4), 690-713.
    Gibson, R., Godin, L, Kellett, D.A., Cottle, J.M., Archibald, D., 2016. Diachronous deformation along the base of the Himalayan metamorphic core. west-central Nepal. GSA Bulletin 128, 860-878. https://doi.org/10.1130/B31328.1.
    Godin, L, Harris, L.B., 2014. Tracking basement cross-strike discontinuities in the Indian crust beneath the Himalayan orogen using gravity data-relationship to upper crustal faults. Geophysical Journal International 198(1), 198-215.
    Godin, L, Parrish, R.R., Brown, R.L., Hodges, K.V., 2001. Crustal thickening leading to exhumation of the Himalayan metamorphic core of central Nepal:Insight from U Pb geochronology and 40Ar/39Ar thermochronology. Tectonics 20(5),729-747.
    Godin, L.,Soucy La Roche, R.S., Waffle, L., Harris, LB., 2018. Influence of inherited Indian basement faults on the evolution of the Himalayan Orogen. Geological Society, London, Special Publications 481, SP481-SP484.
    Godin, L, Grujic, D., Law, R.D., Searle, M.P., 2006. Channel flow, ductile extrusion and exhumation in continental collision zones:an introduction. Geological Society,London, Special Publications 268(1), 1-23.
    Goscombe, B., Gray, D., Foster, D.A., 2018 May. Metamorphic response to collision in the Central Himalayan Orogen. Gondwana Research 57,191-265.
    Groppo, C., Rolfo, F., Lombardo, B., 2009. P-T evolution across the Main Central Thrust Zone(Eastern Nepal):hidden discontinuities revealed by petrology.Journal of Petrology 50(6), 1149-1180.
    Groppo, C., Rolfo, F., Castelli, D., Connolly, JA., 2013a. Metamorphic CO_2 production from calc-silicate rocks via garnet-forming reactions in the CFAS—H_2O-CO_2system. Contributions to Mineralogy and Petrology 166(6), 1655-1675.
    Groppo, C., Rolfo, F., Mosca. P.,2013b. The cordierite bearing anatectic rocks of the higher Himalayan crystallines(eastern Nepal):low pressure anatexis, melt productivity, melt loss and the preservation of cordierite. Journal of Metamorphic Geology 31(2), 187-204.
    Groppo, C., Rolfo, F., Castelli, D., Mosca, P., 2017. Metamorphic C02 production in collisional orogens:Petrological constraints from phase diagram modelling of Himalayan, scapolite-bearing, calc-silicate rocks in the NKC(F)MAS(T)-HC system. Journal of Petrology 58, 53-83. https://doi.org/10.1093/petrology/egx005.
    Groppo, C., Rubatto, D., Rolfo, F., Lombardo, B., 2010. Early oligocene partial melting in the main central thrust zone(Arun valley, eastern Nepal Himalaya). Lithos118(3-4), 287-301.
    Grujic, D., Casey, M., Davidson, C., Hollister, L.S., Kündig, R., Pavlis, T., Schmid, S.,1996. Ductile extrusion of the higher Himalayan crystalline in Bhutan:evidence from quartz microfabrics. Tectonophysics 260(1-3), 21-43.
    Grujic, D., Warren, C.J., Wooden, J.L, 2011. Rapid synconvergent exhumation of Miocene-aged lower orogenic crust in the eastern Himalaya. Lithosphere 3(5),346-366.
    Guillot, S., Cosca, M., Allemand, P., Le Fort, P., 1999. Contrasting metamorphic and geochronologic evolution along the Himalayan belt. In:Macfarlane, A.,Sorkhabi, R.B., Quade, J.(Eds.), Himalaya and Tibet:Mountain Roots to Mountain Tops:Boulder, Colorado, vol. 328. Geological Society of America Special Paper, pp. 117-128.
    Hammer, P., Berthet, T., Het6nyi, G., Cattin, R., Drukpa, D., Chophel, J.,Lechmann, S.,Moigne Le, N., Champollion, C., Doerflinger, E., 2013. Flexure of the India plate underneath the Bhutan Himalaya. Geophysical Research Letters 40,4225-4230.https://doi.org/10.1002/grl.50793.
    Harlov, D., Tropper, P., Seifert, W., Nijland, T., F(o|¨)rster, H.J., 2006. Formation of Al-rich titanite(CaTiSi040-CaAlSi040H)reaction rims on ilmenite in metamorphic rocks as a function of fH20 and f02. Lithos 88(1-4), 72-84.
    Harrison, T.M., Lovera, O.M., Grove, M., 1997. New insights into the origin of two contrasting Himalayan granite belts. Geology 25(10), 899-902.
    Harrison, T.M., McKeegan, K.D., LeFort, P., 1995. Detection of inherited monazite in the Manaslu leucogranite by~(208)Pb~(232)Th ion microprobe dating:crystallization age and tectonic implications. Earth and Planetary Science Letters 133(3-4),271-282.
    Harvey, J.E., Burbank, D.W., Bookhagen, B., 2015. Along-strike changes in Himalayan thrust geometry:Topographic and tectonic discontinuities in western Nepal.Lithosphere 7, 511-518. https://doi.org/10.1130/L444.1.
    Hauck, M.L, Nelson, K.D., Brown, LD., Zhao, W., Ross, A.R., 1998. Crustal structure of the Himalayan orogen at~90 east longitude from Project INDEPTH deep reflection profiles. Tectonics 17(4), 481-500.
    Hayden, LA., Watson, E.B., Wark, D.A., 2008. A thermobarometer for sphene(titanite). Contributions to Mineralogy and Petrology 155, 529-540. https://doi.org/10.1007/s00410-007-0256-y.
    He, D., Webb, AA.G., Larson, K.P., Martin, A.J., Schmitt, A.K., 2015. Extrusion vs.duplexing models of Himalayan mountain building 3:Duplexing dominates from the Oligocene to Present. International Geology Review 57(1):1-27.
    Hetenyi, G., Cattin, R., Berthet, T., Le Moigne, N., Chophel, J., Lechmann, S.,Hammer, P., Drukpa, D., Sapkota, S.N., Gautier, S., Thinley, K., 2016. Segmentation of the Himalayas as revealed by arc-parallel gravity anomalies. Scientific Reports 6, 33866. https://doi.org/10.1038/srep33866.
    Hirschmiller, J., Grujic, D., Bookhagen, B., Coutand, I., Huyghe, P., Mugnier, J.-L,Ojha, T., 2014. What controls the growth of the Himalayan foreland fold-andthrust belt? Geology 42, 247-250. http://10.0.4.106/G35057.1.
    Hodges, K.V., 2000. Tectonics of the Himalaya and southern Tibet from two perspectives. GSA Bulletin 112.324-350. https://doi.org/10.1130/0016-7606(2000)112%3C324:TOTHAS%3E2.0.CO.
    Hodges, K.V., Parrish, R.R., Searle, M.P., 1996. Tectonic evolution of the central Annapurna range, Nepalese Himalayas. Tectonics 15(6), 1264-1291.
    Hodges, K., Bowring, S., Davidek, K., Hawkins, D., Krol, M., 1998. Evidence for rapid displacement on Himalayan normal faults and the importance of tectonic denudation in the evolution of mountain ranges. Geology 26(6), 483-486.
    Hubbard, M.S., Harrison, T.M., 1989.~(40)Ar/~(39)Ar age constraints on deformation and metamorphism in the Main Central Thrust zone and Tibetan Slab, eastern Nepal Himalaya. Tectonics 8(4), 865-880.
    Iaccarino, S., Montomoli, C., Carosi, R., Massonne, H.J., Langone, A., Visona, D., 2015.Pressure-temperature-time-deformation path of kyanite-bearing migmatitic paragneiss in the Kali Gandaki valley(Central Nepal):Investigation of Late Eocene-Early Oligocene melting processes. Lithos 231,103-121.
    Inger, S., Harris, N., 1993. Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya. Journal of Petrology 34(2), 345-368.
    Jamieson, RA., Beaumont, C., 2013. On the origin of orogens. Bulletin 125(11-12),1671-1702.
    Jamieson, R.A, Beaumont, C., Nguyen, M.H., Grujic,D., 2006. Provenance of the Greater Himalayan Sequence and associated rocks:predictions of channel flow models. Geological Society, London, Special Publications 268(1), 165-182.
    Jessup, M.J., Cottle, J.M., Searle, M.P., Law, R.D., Newell, D.L, Tracy, R.J., Waters, D.J.,2008. P-T-t-D paths of Everest Series schist, Nepal. Journal of Metamorphic Geology 26(7), 717-739.
    Jessup, M.J., Law, R.D., Searle, M.P., Hubbard, M.S., 2006. Structural evolution and vorticity of flow during extrusion and exhumation of the Greater Himalayan Slab, Mount Everest Massif, Tibet/Nepal:implications for orogen-scale flow partitioning. Geological Society, London, Special Publications 268(1), 379-413.
    Jouanne, F., Mugnier, J.L, Gamond, J.F., Le Fort, P., Pandey, M.R., Bollinger, L,Flouzat, M., Avouac, J.P., 2004. Current shortening across the Himalayas of Nepal. Geophysical Journal International 157, 1-14. https://doi.org/10.1111/j.1365-246X.2004.02180.X.
    Kellett, DA., Grujic, D., 2012. New insight into the South Tibetan detachment system:Not a single progressive deformation. Tectonics 31(2).
    Kellett, D.A., Grujic, D., Warren, C., Cottle, J., Jamieson, R., Tenzin, T., 2010. Metamorphic history of a syn-convergent orogen-parallel detachment:The South Tibetan detachment system, Bhutan Himalaya. Journal of Metamorphic Geology28(8), 785-808.
    Kellett, D.A, Grujic, D., Coutand, I., Cottle, J., Mukul, M., 2013. The South Tibetan detachment system facilitates ultra rapid cooling of granulite-facies rocks in Sikkim Himalaya. Tectonics 32(2), 252-270.
    Kellett, DA., Grujic, D., Erdmann, s., 2009. Miocene structural reorganization of the South Tibetan detachment, eastern Himalaya:Implications for continental collision. Lithosphere 1(5), 259-281.
    Kirkland, C.L, Fougerouse, D., Reddy, S.M., Hollis, J., Saxey, D.W., 2018. Assessing the mechanisms of common Pb incorporation into titanite. Chemical Geology 483,558-566.
    Klootwijk, CT., Conaghan, P.J., Powell, CM., 1985. The Himalayan Arc:large-scale continental subduction, oroclinal bending and back-arc spreading. Earth and Planetary Science letters 75,167-183. https://doi.org/10.1016/0012-821X(85)90099-8.
    Kohn, M.J., 2008. PTt data from central Nepal support critical taper and repudiate large-scale channel flow of the Greater Himalayan Sequence. The Geological Society of America Bulletin 120(3-4), 259-273.
    Kohn, M.J., Wieland, M.S., Parkinson, C.D., Upreti, B.N., 2005. Five generations of monazite in Langtang gneisses:implications for chronology of the Himalayan metamorphic core. Journal of Metamorphic Geology 23(5), 399-406.
    Kohn, M.J., 2014. Himalayan metamorphism and its tectonic implications, 42,381-419. https://doi.org/10.1146/annurev-earth-060313-055005.
    Kohn, M.J., 2017. Titanite petrochronology. Reviews in Mineralogy and Geochemistry 83(1), 419-441.
    Kohn, M.J., Corrie, S.L, 2011. Preserved Zr-temperatures and U-Pb ages in highgrade metamorphic titanite:evidence for a static hot channel in the Himalayan orogen. Earth and Planetary Science Letters 311(1-2), 136-143.
    Kohn, M.J., Wieland, M.S., Parkinson, C.D., Upreti, B.N., 2004. Miocene faulting at plate tectonic velocity in the Himalaya of central Nepal. Earth and Planetary Science Letters 228(3-4), 299-310.
    Kylander-Clark, A.R.C., Hacker, B.R., Mattinson, J.M., 2008. Slow exhumation of UHP terranes:titanite and rutile ages of the Western Gneiss Region, Norway. Earth and Planetary Science Letters 272(3-4), 531-540.
    Kylander-Clark, A.R., Hacker, B.R., Cottle, J.M., 2013. Laser-ablation split-stream ICP petrochronology. Chemical Geology 345, 99-112.
    Langille, J.M., Jessup, M.J., Cottle, J.M., Lederer, G., Ahmad, T., 2012. Timing of metamorphism, melting and exhumation of the Leo Pargil dome, northwest India. Journal of Metamorphic Geology 30(8), 769-791.
    Larson, K.P., Ali, A., Shrestha, S., Soret, M., Cottle, J.M., Ahmad, R., 2019. Timing of metamorphism and deformation in the Swat valley, northern Pakistan:insight into garnet-monazite HREE partitioning. Geoscience Frontiers 10, 849-861.
    Larson, K.P., Ambrose, T.K., Webb, A.G., Cottle, J.M., Shrestha, S., 2015. Reconciling Himalayan midcrustal discontinuities:The Main Central thrust system. Earth and Planetary Science Letters 429.139-146. https://doi.org/10.1016/j.epsl.2015.07.070.
    Larson, K.P., Camacho, A., Cottle, J.M., Coutand, I., Buckingham, H.M., Ambrose, T.K.,Rai, S.M., 2017. Cooling, exhumation, and kinematics of the Kanchenjunga Himal, far east Nepal. Tectonics 1-16. https://doi.org/10.1002/2017TC004496.
    Larson, K.P., Cottle, J.M., 2014. Midcrustal discontinuities and the assembly of the Himalayan midcrust Tectonics 33(5), 718-740.
    Larson, K.P., Cottle, J.M., 2015. Initiation of crustal shortening in the Himalaya. Terra Nova 27(3), 169-174.
    Larson, K.P., Gervais, F., Kellett, D.A, 2013. AP-T-t-D discontinuity in east-central Nepal:implications for the evolution of the Himalayan mid-crust. Lithos 179,275-292.
    Law, R.D., Jessup, M.J., Searle, M.P., Francsis, M.K., Waters, D.J., Cottle, J.M., 2011.Telescoping of isotherms beneath the South Tibetan detachment system, Mount Everest Massif. Journal of Structural Geology 33(11), 1569-1594.
    Lederer, G.W., Cottle, J.M., Jessup, M.J., Langille, J.M., Ahmad, T., 2013. Timescales of partial melting in the Himalayan middle crust:insight from the Leo Pargil dome, northwest India. Contributions to Mineralogy and Petrology 166(5),1415-1441.
    Leloup, P.H., Maheo, G., Arnaud, N., Kali, E., Boutonnet, E., Liu, D., et al, 2010. The South Tibet detachment shear zone in the Dinggye area:time constraints on extrusion models of the Himalayas. Earth and Planetary Science Letters 292(1-2), 1-16.
    Long, S., McQuarrie, N., Tobgay, T., Grujic, D., 2011. Geometry and crustal shortening of the Himalayan fold-thrust belt, eastern and central Bhutan. Bulletin of the Geological Society of America 123, 1427-1447. https://doi.org/10.1130/B30306.1.
    Macfarlane, A.M., 1993. Chronology of tectonic events in the crystalline core of the Himalaya, Langtang National Park, central Nepal. Tectonics 12(4),1004-1025.
    Martin, A.J., Copeland, P., Benowitz,JA., 2015. Muscovite 40Ar/39Ar ages help reveal the Neogene tectonic evolution of the southern Annapurna Range, central Nepal. Geological Society, London, Special Publications 412(1), 199-220.
    Martin, A.J., 2017a. A review of Himalayan stratigraphy, magmatism, and structure.Gondwana Research 49, 42-80.
    Martin, A.J., 2017b. A review of definitions of the Himalayan Main Central Thrust.International Journal of Earth Sciences 106(6), 2131-2145.
    Martin, A.J., Ganguly, J., DeCelles, P.G., 2010. Metamorphism of Greater and Lesser Himalayan rocks exposed in the Modi Khola valley, central Nepal. Contributions to Mineralogy and Petrology 159(2), 203.
    Marsh, J.H., Smye, A.J., 2017. U-Pb systematics and trace element characteristics in titanite from a high-pressure mafic granulite. Chemical Geology 466,403-416.
    Mathavan, V., Fernando, G.WA.R., 2001. Reactions and textures in grossular-wollastonite-scapolite calc-silicate granulites from Maligawila. Sri Lanka:evidence for high-temperature isobaric cooling in the meta-sediments of the Highland Complex. Lithos 59(4), 217-232.
    McDonough, W.F., Sun, S.S., 1995. The composition of the Earth. Chemical Geology120(3-4), 223-253.
    Mercier, J., Braun, J., van der Beek, P., 2017. Do along-strike tectonic variations in the Nepal Himalaya reflect different stages in the accretion cycle? Insights from numerical modeling. Earth and Planetary Science Letters 472,299-308. https://doi.org/10.1016/j.epsl.2017.04.041.
    Molnar, P., Stock, J.M., 2009. Slowing of India's convergence with Eurasia since 20Ma and its implications for Tibetan mantle dynamics. Tectonics 28, 1-11.https://doi.org/10.1029/2008TC002271.
    Molnar, P., Tapponnier, P., 1975. Cenozoic tectonics of Asia:Effects of a continental collision. Science 189, 419-426. https://doi.org/10.1126/science.189.4201.419.
    Montomoli, C., laccarino, S., Carosi, R., Langone, A.. Visonà, D., 2013. Tectonometamorphic discontinuities within the Greater Himalayan Sequence in Western Nepal(Central Himalaya):insights on the exhumation of crystalline rocks.Tectonophysics 608.1349-1370.
    Montomoli, C., Carosi, R., laccarino, S., 2015. Tectonometamorphic discontinuities in the Greater Himalayan Sequence:a local or a regional feature? Geological Society, London, Special Publications 412(1), 25-41.
    Mottram, C.M., Parrish, R.R., Regis, D., Warren, C.J., Argles, T.W., Harris, N.B.W.,Roberts, N.M.W., 2015a. Using U-Th-Pb petrochronology to determine rates of ductile thrusting:Time windows into the Main Central Thrust, Sikkim Himalaya. Tectonics 34,1355-1374. https://doi.org/10.1002/2014TC003743.
    Mottram, C.M., Warren, C.j., Halton, A.M., Kelley, S.P., Harris, N.B., 2015b. Argon behaviour in an inverted Barrovian sequence, Sikkim Himalaya:the consequences of temperature and timescale on 40Ar/39Ar mica geochronology.Lithos 238, 37-51.
    Mottram, C.M., Warren, C.J., Regis, D., Roberts, N.M.W., Harris, N.B.W., Argles, T.W.,Parrish, R.R., 2014. Developing an inverted barrovian sequence; insights from monazite petrochronology. Earth and Planetary Science Letters 403, 418-431.https://doi.org/10.1016/j.epsl.2014.07.006.
    Murphy, M.A., Mark Harrison, T., 1999. Relationship between leucogranites and the Qomolangma detachment in the Rongbuk Valley, south Tibet. Geology 27(9),831-834.
    Najman, Y., Appel, E., Boudagher-Fadel, M., Bown, P., Carter, A., Garzanti, E.,Godin, L, Han, J., Liebke, U., Oliver, G., Parrish, R., Vezzoli, G., 2010. Timing of India-Asia collision:Geological, biostratigraphic, and palaeomagnetic constraints. Journal of Geophysical Research 115, B12416. https://doi.org/10.1029/2010JB007673.
    Parsons, A.J., Law, R.D., Searle, M.P., Phillips, R.J., Lloyd, G.E., 2016a. Geology of the Dhaulagiri-Annapurna-Manaslu Himalaya, Western Region, Nepal. 1:200,000.Journal of Maps 12(1), 100-110.
    Parsons, A.J., Phillips, R.J., Lloyd, G.E., Law, R.D., Searle, M.P., Walshaw, R.D., 2016b.Mid-crustal deformation of the Annapurna-Dhaulagiri Himalaya, central Nepal:An atypical example of channel flow during the Himalayan orogeny. Geosphere12(3), 985-1015.
    Pidgeon, R.T., Bosch, D., Bruguier, O., 1996. Inherited zircon and titanite UA Pb systems in an Archaean syenite from southwestern Australia:implications for UA Pb stability of titanite. Earth and Planetary Science Letters 141(1-4),187-198.
    Regis, D., Warren, C.J., Young, D., Roberts, N.M., 2014. Tectono-metamorphic evolution of the Jomolhari massif:Variations in timing of syn-collisional metamorphism across western Bhutan. Lithos 190, 449-466.
    Regis, D., Warren, C.J., Mottram, C.M., Roberts, N.M.W., 2016. Using monazite and zircon petrochronology to constrain the P-T-t evolution of the middle crust in the Bhutan Himalaya. Journal of Metamorphic Geology 34(6), 617-639.
    Replumaz, A., Negredo, A.M., Villasenor, A., Guillot, S., 2010. Indian continental subduction and slab break-off during Tertiary collision. Terra Nova 22,290-296.https://doi.org/10.1111/j.1365-3121.2010.00945.x.
    Rapa, G.,Groppo, C., Rolfo, F., Petrelli, M.,Mosca, P., Perugini, D., 2017. Titanitebearing calc-silicate rocks constrain timing, duration and magnitude of metamorphicCO_2 degassing the Himalayan belt. Lithos 292, 364-378.
    Robert, X., Van Der Beek, P., Braun, J., Perry, C., Mugnier, J.L, 2011. Control of detachment geometry on lateral variations in exhumation rates in the Himalaya:Insights from low-temperature thermochronology and numerical modeling. Journal of Geophysical Research:Solid Earth 116, 1-22. https://doi.org/10.1029/2010JB007893.
    Robinson, D.M., McQuarrie, N., 2012. Pulsed deformation and variable slip rates within the central Himalayan thrust belt. Lithosphere 4(5), 449-464.
    Robinson, D.M., DeCelles, P.G., Copeland, P., 2006. Tectonic evolution of the Himalayan thrust belt in western Nepal:Implications for channel flow models. The Geological Society of America Bulletin 118(7-8), 865-885.
    Rolfo, F., Groppo, C., Mosca, P., 2017. Metamorphic C02 production in calc-silicate rocks from the eastern Himalaya. Italian Journal of Geosciences 136, 28-38.https://doi.org/10.3301/IJG.2015.36.
    Rubatto, D., Hermann, J., 2001. Exhumation as fast as subduction? Geology 29(1).3-6.
    Rubatto, D., Chakraborty, S., Dasgupta, S., 2013. Timescales of crustal melting in the Higher Himalayan Crystallines(Sikkim, Eastern Himalaya)inferred from trace element-constrained monazite and zircon chronology. Contributions to Mineralogy and Petrology 165(2), 349-372.
    Sch(a|¨)rer, U., 1984. The effect of initial 230Th disequilibrium on young UPb ages:the Makalu case. Himalaya. Earth and Planetary Science Letters 67(2),191-204.
    Scharer, U., Xu, R.H., Allègre, C.J.. 1986. U(Th)Pb systematics and ages of Himalayan leucogranites, South Tibet. Earth and Planetary Science Letters 77(1), 35-48.
    Schultz, M.H.. Hodges, K.V., Ehlers, T.A., van Soest, M., Wartho, J.A., 2017. Thermochronologic constraints on the slip history of the South Tibetan detachment system in the Everest region, southern Tibet. Earth and Planetary Science Letters 459,105-117.
    Scott, D.J., St-Onge, M.R., 1995. Constraints on Pb closure temperature in titanite based on rocks from the Ungava orogen, Canada:Implications for U-Pb geochronology and PTt path determinations. Geology 23(12),1123-1126.
    Searle, M.P., Godin, L, 2003. The South Tibetan detachment and the Manaslu leucogranite:A structural reinterpretation and restoration of the AnnapurnaManaslu Himalaya, Nepal. The Journal of Geology 111(5), 505-523.
    Searle, M.P., Simpson. R.L, Law, R.D., Parrish, R.R., Waters, D.J., 2003. The structural geometry, metamorphic and magmatic evolution of the Everest massif, High Himalaya of Nepal-South Tibet. Journal of the Geological Society 160(3),345-366.
    Simpson, R.L, Parrish, R.R., Searle, M.P., Waters, D.J., 2000. Two episodes of monazite crystallization during metamorphism and crustal melting in the Everest region of the Nepalese Himalaya. Geology 28(5), 403-406.
    Singer, J., Obermann, A., Kissling, E., Fang, H.. Hetenyi, G., Grujic, D.. 2017. Alongstrike variations in the Himalayan orogenic wedge structure in Bhutan from ambient seismic noise tomography. Geochemistry, Geophysics, Geosystems 18,1483-1498. https://doi.org/10.1002/2016GC006742.
    Soucy La Roche, R.S., Godin, L, Cottle, J.M., Kellett, DA., 2018 May. Preservation of the early evolution of the Himalayan middle crust in foreland klippen:insights from the Karnali klippe, west Nepal. Tectonics 37(5), 1161-1193.
    Spencer, K.J., Hacker, B.R., Kylander-Clark, A.R.C., Andersen, T.B., Cottle, J.M.,Stearns, M.A., Poletti, J.E., Seward, G.G.E., 2013. Campaign-style titanite U-Pb dating by laser-ablation ICP:Implications for crustal flow, phase transformations and titanite closure. Chemical Geology 341.84-101. https://doi.org/10.1016/j.chemgeo.2012.11.012.
    Stacey, J.S., Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26.207-221. https://doi.org/10.1016/0012-821X(75)90088-6.
    Stearns, M.A., Hacker, B.R., Ratschbacher, L, Rutte, D., Kylander-Clark, A.R.C., 2015.Titanite petrochronology of the Pamir gneiss domes:Implications for middle to deep crust exhumation and titanite closure to Pb and Zr diffusion. Tectonics 34,784-802. https://doi.org/10.1002/2014TC003774.
    Stearns, M.A., Cottle, J.M., Hacker, B.R., Kylander-Clark, A.R.C., 2016. Extracting thermal histories from the near-rim zoning in titanite using coupled U-Pb and trace-element depth profiles by single-shot laser-ablation split stream(SSLASS)ICP-MS. Chemical Geology 422, 13-24. https://doi.org/10.1016/j.chemgeo.2015.12.011.
    Stephenson, N., Cook, N., 1997. Metamorphic evolution of calcsilicate granulites near Battye Glacier, northern Prince Charles Mountains, East Antarctica. Journal of Metamorphic Geology 15(3), 361-378.
    Streule, M.J., Searle, M.P., Waters, D.J., Horstwood, M.S., 2010. Metamorphism,melting, and channel flow in the Greater Himalayan Sequence and Makalu leucogranite:Constraints from thermobarometry, metamorphic modeling, and U-Pb geochronology. Tectonics 29(5).
    Smye, A.J., Marsh, J.H., Vermeesch, P., Garber, J.M., Stockli, D.F., 2018 September.Applications and limitations of U-Pb thermochronology to middle and lower crustal thermal histories. Chemical Geology 494,1-18.
    Thiede, R.C., Ehlers, T.A., 2013. Large spatial and temporal variations in Himalayan denudation. Earth and Planetary Science Letters 371-372, 278-293. https://doi.org/10.1016/j.epsl.2013.03.004.
    Tobgay, T., McQuarrie, N., Long, S., Kohn, M.J., Corrie, S.L, 2012. The age and rate of displacement along the Main Central Thrust in the western Bhutan Himalaya.Earth and Planetary Science Letters 319,146-158.
    Treloar, P.J., Coward, M.P., 1991. Indian Plate motion and shape:constraints on the geometry of the Himalayan orogen. Tectonophysics 191, 189-198. https://doi.org/10.1016/0040-1951(91)90055-W.
    Van der Beek, P., Litty, C., Baudin, M., Mercier, J., Robert, X., Hardwick, E., 2016.Contrasting tectonically driven exhumation and incision patterns, western versus central Nepal Himalaya. Geology 44, 327-330. https://doi.org/10.1130/G37579.1.
    Vannay, J.C., Grasemann, B., 1998. Inverted metamorphism in the High Himalaya of Himachal Pradesh(NW India):phase equilibria versus thermobarometry.Schweizerische Mineralogische und Petrographische Mitteilungen 78(1),107-132.
    Vannay, J.C., Hodges, K.V., 1996. Tectonometamorphic evolution of the Himalayan metamorphic core between the Annapurna and Dhaulagiri, central Nepal.Journal of Metamorphic Geology 14(5), 635-656.
    Vannay, J.C., Grasemann. B., Rahn, M., Frank, W., Carter, A., Baudraz, V., Cosca, M.,2004. Miocene to Holocene exhumation of metamorphic crustal wedges in the NW Himalaya:Evidence for tectonic extrusion coupled to fluvial erosion. Tectonics 23(1).
    Viskupic, K., Hodges, K,V., Bowring, SA, 2005. Timescales of melt generation and the thermal evolution of the Himalayan metamorphic core, Everest region,eastern Nepal. Contributions to Mineralogy and Petrology 149(1), 1-21.
    Walker, J.D., Martin, M.W., Bowring, SA, Searle, M.P., Waters. D.J., Hodges, K.V.,1999. Metamorphism, melting, and extension:Age constraints from the High Himalayan slab of southeast Zanskar and northwest Lahaul. The Journal of Geology 107(4), 473-495.
    Walters, J.B., Kohn, M.J., 2017. Protracted thrusting followed by late rapid cooling of the Greater Himalayan Sequence, Annapurna Himalaya, central Nepal:Insights from titanite petrochronology. Journal of Metamorphic Geology 35(8),897-917.
    Warren, C.J., Grujic, D., Kellett, DA., Cottle, J., Jamieson.R.A, Ghalley, K.S., 2011.Probing the depths of the India-Asia collision:U-Th-Pb monazite chronology of granulites from NW Bhutan. Tectonics 30(2).
    Warren, C.J., Hanke, F., Kelley, S.P., 2012. When can muscovite 40Ar/39Ar dating constrain the timing of metamorphic exhumation? Chemical Geology 291,79-86.
    Warren, C.J., Singh, A.K., Roberts, N.M., Regis, D., Halton, A.M., Singh, R.B., 2014.Timing and conditions of peak metamorphism and cooling across the Zimithang Thrust, Arunachal Pradesh, India. Lithos 200, 94-110.
    Webb, A.A.G., Yin, A., Harrison, T.M., Celerier, J., Burgess, W.P., 2007. The leading edge of the Greater Himalayan Crystalline complex revealed in the NW Indian Himalaya:Implications for the evolution of the Himalayan orogen. Geology 35(10), 955-958.
    Webb, AAG., Guo, H., Clift, P.D., Husson, L, Müller, T., Costantino, D., Yin, A., Xu, Z.,Cao, H.,Wang, Q.,2017. The Himalaya in 3D:Slab dynamics controlled mountain building and monsoon intensification. Lithosphere L636.1. https://doi.org/10.1130/L636.1.
    Yakymchuk, C., Godin, L, 2012. Coupled role of deformation and metamorphism in the construction of inverted metamorphic sequences:an example from farnorthwest Nepal. Journal of Metamorphic Geology 30(5), 513-535.
    Yin, A., 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Science Reviews 76, 1-131. https://doi.org/10.1016/j.earscirev.2005.05.004.
    Zeiger, K., Gordon, S.M., Long, S.P., Kylander-Clark, A.R.C., Agustsson, K., Penfold, M.,2015. Timing and conditions of metamorphism and melt crystallization in greater Himalayan rocks, eastern and central Bhutan:insight from U-Pb zircon and monazite geochronology and trace-element analyses. Contributions to Mineralogy and Petrology 169(5), 47.
    Zhang, LS., Scharer, U., 1996. Inherited Pb components in magmatic titanite and their consequence for the interpretation of U-Pb ages. Earth and Planetary Science Letters 138(1-4), 57-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700