用户名: 密码: 验证码:
有机氮源添加对嗜热厌氧杆菌产乙醇的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Organic Nitrogen Source Addition on Ethanol Production by Thermoanaerobacterium aotearoense SCUT27Δldh
  • 作者:任梦梦 ; 傅宏鑫 ; 马毅 ; 王菊芳
  • 英文作者:Ren Meng-meng;Fu Hong-xin;Ma Yi;Wang Ju-fang;South China University of Technology;
  • 关键词:嗜热厌氧杆菌 ; 乙醇 ; 氮源
  • 英文关键词:Thermoanaerobacterium aotearoense;;Ethanol;;Nitrogen source
  • 中文刊名:生物化工
  • 英文刊名:Biological Chemical Engineering
  • 机构:华南理工大学;
  • 出版日期:2019-10-25
  • 出版单位:生物化工
  • 年:2019
  • 期:05
  • 基金:国家自然科学基金资助项目(21676098,21878103)
  • 语种:中文;
  • 页:9-13
  • 页数:5
  • CN:36-1336/TQ
  • ISSN:2096-0387
  • 分类号:TQ223.122;TQ920.6
摘要
嗜热厌氧杆菌(Thermoanaerobacterium aotearoense SCUT27Δldh)能利用葡萄糖与木糖发酵,是纤维素乙醇生产的理想菌株。为进一步改善菌株在不同底物(葡萄糖、木糖和混合糖)条件下的乙醇发酵性能,本文探究了有机氮源对嗜热厌氧杆菌发酵产乙醇的影响。结果表明,4 g/L酵母提取物和2 g/L胰蛋白胨为最佳的有机氮源组成,在不同底物条件下菌株生物量、底物利用率、乙醇浓度和生产强度与对照相比,分别提升41%~109%、50%~56%、53%~76%和91%~111%。此外,本研究还证实了充足的有机氮源供给对于T. aotearoense SCUT27Δldh的葡萄糖和木糖高效共利用起到重要的作用。
        Thermoanaerobacterium aotearoense SCUT27Δldh can utilize glucose and xylose, and is an ideal strain for cellulosic ethanol production. In order to improve the fermentation performance of ethanol production using various substrates(glucose, xylose and mixed sugar), the effect of organic nitrogen source addition was investigated. It is showed that the optimum organic nitrogen source composition was 4 g/L yeast extract and 2 g/L tryptone, under which condition the cell density, substrate consumption, ethanol titer and productivity increased by 41% ~ 109%、50% ~ 56%、53% ~ 76% and 91% ~ 111%, respectively. Compared with the control when various substrates were used as the carbon sources. In addition, this study also confirmed that sufficient organic nitrogen source supply played an important role in the glucose and xylose co-utilization for T. aotearoense SCUT27Δldh.
引文
[1] Yang X, Lai Z, Lai C, et al. Efficient Production of L-lactic Acid by an Engineered Thermoanaerobacterium aotearoense with Broad Substrate Specificity[J]. Biotechnology for Biofuels, 2013,6(1):124.
    [2] Suo Y, Fu H, Ren M, et al. Butyric acid Production from Lignocellulosic Biomass Hydrolysates by Engineered Clostridium tyrobutyricum Overexpressing Class I Heat Shock Protein GroESL[J].Bioresoure Technology, 2018,250:691-698.
    [3] Choi YN, Park JM. Enhancing Biomass and Ethanol Production by Increasing NADPH Production in Synechocystis sp. PCC 6803[J].Bioresoure Technology, 2016,213:54-57.
    [4] Taylor MP, Eley KL, Martin S, et al. Thermophilic Ethanologenesis:Future Prospects for Second-Generation Bioethanol Production[J].Trends in Biotechnology, 2009, 27(7):398-405.
    [5] Ai HX, Zhang JJ, Yang MJ, et al. Draft genome sequence of an anaerobic, Thermophilic bacterium, Thermoanaerobacterium aotearoense SCUT27, isolated from a hot spring in China[J]. Genome Announcements, 2014,2(1):e00041-14.
    [6] Cai Y, Lai C, Li S, et al. Disruption of Lactate Dehydrogenase through Homologous Recombination to Improve Bioethanol Production in Thermoanaerobacterium aotearoense[J]. Enzyme and Microbial Technology, 2011,48(2):155-161.
    [7] Cai YH, Liang ZX, Li S, et al. Bioethanol from Fermentation of Cassava pulp in a Fibrous-bed Bioreactor using ImmobilizedΔldh,a Genetically Engineered Thermoanaerobacterium aotearoense[J].Biotechnology and Bioprocess Engineering, 2012,17:1270-1277.
    [8] Raposo S, Constantino A, Rodrigues F, et al. Nitrogen Sources Screening for Ethanol Production using Carob Industrial Wastes[J].Applied Biochemistry and Biotechnology,2017,181(2):827-843.
    [9] Ard?VKTVY. Influence of Nitrogen Sources on Growth and Fermentation Performance of Different Wine Yeast Species During Alcoholic Fermentation[J]. Applied Microbiology and Biotechnology,2015,99:10191-10207.
    [10] Ozkan M, Yilmaz EI, Lynd LR, et al. Cloning and Expression of the Clostridium thermocellum L-lactate Dehydrogenase Gene in Escherichia coli and Enzyme Characterization[J]. Canadian Journal of Microbiology, 2004,50(10):845-851.
    [11] Cao GL, Ren NQ, Wang AJ, et al. Statistical Optimization of Culture Condition for Enhanced Hydrogen Production by Thermoanaerobacterium thermosaccharolyticum W16[J]. Bioresoure Technology, 2010,101(6):2053-2058.
    [12] Matsushika A, Hoshino T. Increased Ethanol Production by Deletion of HAP4 in Recombinant Xylose-assimilating Saccharomyces cerevisiae[J]. Journal of Industrial Microbiology&Biotechnology,2015,42(12):1623-1631.
    [13] Jeffries TW. Engineering Yeasts for Xylose Metabolism[J]. Current Opinion in Biotechnology, 2006,17(3):320-326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700