用户名: 密码: 验证码:
树木木质部生长动态及其调节机制研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progresses on Xylem Formation Dynamics and Its Regulation Mechanism
  • 作者:郭霞丽 ; 余碧云 ; 张邵康 ; 黎敬业 ; 王婕 ; 黄建国
  • 英文作者:GUO Xia-li;YU Bi-yun;ZHANG Shao-kang;LI Jing-ye;WANG Jie;HUANG Jian-guo;Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences;Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:生长季长度 ; 生长速率 ; 植物激素 ; 碳水化合物 ; 氮素 ; 气象因子
  • 英文关键词:Length of growing season;;Growth rate;;Phytohormone;;Carbohydrate;;Nitrogen;;Meteorological factor
  • 中文刊名:热带亚热带植物学报
  • 英文刊名:Journal of Tropical and Subtropical Botany
  • 机构:中国科学院华南植物园退化生态系统植被恢复与管理重点实验室广东省应用植物学重点实验室;中国科学院核心植物园植物生态学协同中心;中国科学院大学;
  • 出版日期:2019-09-15
  • 出版单位:热带亚热带植物学报
  • 年:2019
  • 期:05
  • 基金:国家自然科学基金项目(41861124001,31570584,41661144007);; 广东自然科学基金项目(2016A030313152)资助~~
  • 语种:中文;
  • 页:77-83
  • 页数:7
  • CN:44-1374/Q
  • ISSN:1005-3395
  • 分类号:S718.4
摘要
全球变化对树木木质部生长产生了深远影响,进而影响了森林生态系统的固碳功能以及全球生态系统能量和物质的循环过程。树木木质部生长动态主要包括形成层活动开始和结束的时间、生长季长度以及分裂速率等,其受到多种因素的共同调节,如植物激素、碳水化合物、氮素和气象因子等。通过在精细的时间尺度上对比研究树木木质部生长动态,揭示木质部形成的决定因子,可以加深对树木生长生理机制的理解,从而提高其对气候变化响应的预测精度。对近年来在木质部的形成动态及其调节机制方面取得的研究进展进行了综述,并对未来的研究方向进行了展望。
        Global changes impose a profound impact on the xylem formation, which in turn affects the carbon sequestration of forest ecosystems and fundamental services of global ecosystems. The xylem formation dynamic of tree is mainly characterized by the timing of the onset and the end of cambial activity, the length of the growing season, and the growth rate, etc., which are jointly regulated by various factors, such as phytohormone, carbohydrate, nitrogen and meteorological factors. By investigating the formation dynamics of xylem over a fine time scale, the determinants of xylem formation could be revealed, the understanding of physiological mechanism of tree growth would be deepen, and the prediction accuracy of the tree growth response to climate changes would further improve. The recent research progresses in the xylem formation dynamic and its regulation mechanism were reviewed, and the prospects for the future research were provided.
引文
[1] PAN Y D, BIRDSEY R A, FANG J Y, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333(6045):988–993. doi:10.1126/science.1201609.
    [2] ALLEN C D, MACALADY A K, CHENCHOUNI H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. For Ecol Manage, 2010, 259(4):660–684. doi:10.1016/j.foreco.2009.09.001.
    [3] GRI?AR J,?UFAR K, OVEN P, et al. Differentiation of terminal latewood tracheids in silver fir trees during autumn[J]. Ann Bot, 2005,95(6):959–965. doi:10.1093/aob/mci112.
    [4] ROSSI S, DESLAURIERS A, GRI?AR J, et al. Critical temperatures for xylogenesis in conifers of cold climates[J]. Glob Ecol Biogeogr,2008, 17(6):696–707. doi:10.1111/j.1466-8238.2008.00417.x.
    [5] PARMESAN C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming[J]. Glob Change Biol, 2007, 13(9):1860–1872. doi:10.1111/j.1365-2486.2007.01404.x.
    [6] DESLAURIERS A, MORIN H, BEGIN Y. Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest(Canada)[J]. Can J For Res, 2003, 33(2):190–200. doi:10.1139/x02-178.
    [7] DESLAURIERS A, ROSSI S, ANFODILLO T, et al. Cambial phenology,wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy[J]. Tree Physiol, 2008, 28(6):863–871.doi:10.1093/treephys/28.6.863.
    [8] ZHAI L H, BERGERON Y, HUANG J G, et al. Variation in intraannual wood formation, and foliage and shoot development of three major Canadian boreal tree species[J]. Amer J Bot, 2012, 99(5):827–837. doi:10.3732/ajb.1100235.
    [9] HUANG J G, DESLAURIERS A, ROSSI S. Xylem formation can be modeled statistically as a function of primary growth and cambium activity[J]. New Phytol, 2014, 203(3):831–841. doi:10.1111/nph.12859.
    [10] ROSSI S, BORDELEAU A, MORIN H, et al. The effects of N-enriched rain and warmer soil on the ectomycorrhizae of black spruce remain inconclusive in the short term[J]. Ann For Sci, 2013, 70(8):825–834.doi:10.1007/s13595-013-0329-1.
    [11] DESLAURIERS A, MORIN H. Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables[J]. Trees,2005, 19(4):402–408. doi:10.1007/s00468-004-0398-8.
    [12] CUNY H E, RATHGEBER C B K, LEBOURGEOIS F, et al. Life strategies in intra-annual dynamics of wood formation:Example of three conifer species in a temperate forest in north-east France[J]. Tree Physiol, 2012, 32(5):612–625. doi:10.1093/treephys/tps039.
    [13] REN P, ROSSI S, GRICAR J, et al. Is precipitation a trigger for the onset of xylogenesis in Juniperus przewalskii on the north-eastern Tibetan Plateau?[J]. Ann Bot, 2015, 115(4):629–639. doi:10.1093/aob/mcu259.
    [14] HE M H, YANG B, SHISHOV V, et al. Relationships between wood formation and Cambium phenology on the Tibetan Plateau during1960–2014[J]. Forests, 2018, 9(2):86. doi:10.3390/f9020086.
    [15] DUCHESNE L, HOULE D, D’ORANGEVILLE L. Influence of climate on seasonal patterns of stem increment of balsam fir in a boreal forest of Québec, Canada[J]. Agric For Meteor, 2012, 162–163:108–114. doi:10.1016/j.agrformet.2012.04.016.
    [16] ROSSI S, GIRARD, M J, MORIN H. Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production[J]. Glob Change Biol, 2014, 20(7):2261–2271. doi:10.1111/gcb.12470.
    [17] RATHGEBER C B K, ROSSI S, BONTEMPS J D. Cambial activity related to tree size in a mature silver-fir plantation[J]. Ann Bot, 2011,108(3):429–438. doi:10.1093/aob/mcr168.
    [18] ZHANG J Z, GOU X H, MANZANEDO R D, et al. Cambial phenology and xylogenesis of Juniperus przewalskii over a climatic gradient is influenced by both temperature and drought[J]. Agric For Meteor, 2018, 260–261:165–175. doi:10.1016/j.agrformet.2018.06.011.
    [19] ZHANG J Z, GOU X H, PEDERSON N, et al. Cambial phenology in Juniperus przewalskii along different altitudinal gradients in a cold and arid region[J]. Tree Physiol, 2018, 38(6):840–852. doi:10.1093/tree phys/tpx160.
    [20] REN P, ZIACO E, ROSSI S, et al. Growth rate rather than growing season length determines wood biomass in dry environments[J]. Agric For Meteor, 2019, 271:46–53. doi:10.1016/j.agrformet.2019.02.031.
    [21] WEIJERS D, NEMHAUSER J, YANG Z B. Auxin:Small molecule, big impact[J]. J Exp Bot, 2018, 69(2):133–136. doi:10.1093/jxb/erx463.
    [22] ALONI R. Role of hormones in controlling vascular differentiation and the mechanism of lateral root initiation[J]. Planta, 2013, 238(5):819–830. doi:10.1007/s00425-013-1927-8.
    [23] COSGROVE D J. Loosening of plant cell walls by expansins[J].Nature, 2000, 407(6802):321–326. doi:10.1038/35030000.
    [24] PERROT-RECHENMANN C. Cellular responses to auxin:Division versus expansion[J]. Cold Spring Harb Perspect Biol, 2010, 2(5):a001446. doi:10.1101/cshperspect.a001446.
    [25] BHALERAO R P, FISCHER U. Auxin gradients across woodinstructive or incidental?[J]. Physiol Plant, 2014, 151(1):43–51. doi:10.1111/ppl.12134.
    [26] FAJSTAVR M, PASCHOVáZ, GIAGLI K, et al. Auxin(IAA)and soluble carbohydrate seasonal dynamics monitored during xylogenesis and phloemogenesis in Scots pine[J]. iForest-Biogeosci Forestry, 2018,11:553–562. doi:10.3832/ifor2734-011.
    [27] KIJIDANI Y, NAGAI T, SUWASHITA T, et al. Seasonal variations of tracheid formation and amount of auxin(IAA)and gibberellin A4(GA4)in cambial-region tissues of mature sugi(Cryptomeria japonica)cultivar grown in a Nelder plot with different tree densities[J]. J Wood Sci, 2017, 63(4):315–321. doi:10.1007/s10086-017-1626-3.
    [28] LARSON P R. Wood formation and the concept of wood quality[J].Yale Univ Sch For Bull, 1969, 74:1–54.
    [29] UGGLA C, MAGEL E, MORITZ T, et al. Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in Scots pine[J]. Plant Physiol, 2001, 125(4):2029–2039. doi:10.1104/pp.125.4.2029.
    [30] IMMANEN J, NIEMINEN K, SMOLANDER O P, et al. Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial activity[J]. Curr Biol, 2016, 26(15):1990–1997. doi:10.1016/j.cub.2016.05.053.
    [31] ISRAELSSON M, SUNDBERG B, MORITZ T. Tissue-specific localization of gibberellins and expression of gibberellin-biosynthetic and signaling genes in wood-forming tissues in aspen[J]. Plant J, 2005, 44(3):494–504. doi:10.1111/j.1365-313X.2005.02547.x.
    [32] NIEMINEN K, IMMANEN J, LAXELL M, et al. Cytokinin signaling regulates cambial development in poplar[J]. Proc Natl Acad Sci USA,2008, 105(50):20032–20037. doi:10.1073/pnas.0805617106.
    [33] ALONI R. Ecophysiological implications of vascular differentiation and plant evolution[J]. Trees, 2015, 29(1):1–16. doi:10.1007/s00468-014-1070-6.
    [34] AMTHOR J S. Efficiency of lignin biosynthesis:A quantitative analysis[J]. Ann Bot, 2003, 91(6):673–695. doi:10.1093/aob/mcg073.
    [35] RICHARDSON A D, CARBONE M S, KEENAN T F, et al. Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees[J]. New Phytol, 2013, 197(3):850–861. doi:10.1111/nph.12042.
    [36] DESLAURIERS A, HUANG J G, BALDUCCI L, et al. The contribution of carbon and water in modulating wood formation in black spruce saplings[J]. Plant Physiol, 2016, 170(4):2072–2084. doi:10.1104/pp.15.01525.
    [37] WANG L, RUAN Y L. Regulation of cell division and expansion by sugar and auxin signaling[J]. Front Plant Sci, 2013, 4:163. doi:10.3389/fpls.2013.00163.
    [38] HARTIG K, BECK E. Crosstalk between auxin, cytokinins, and sugars in the plant cell cycle[J]. Plant Biol, 2006, 8(3):389–396. doi:10.1055/s-2006-923797.
    [39] ROLLAND F, BAENA-GONZALEZ E, SHEEN J. Sugar sensing and signaling in plants:Conserved and novel mechanisms[J]. Annu Rev Plant Biol, 2006, 57:675–709. doi:10.1146/annurev.arplant.57.032905.105441.
    [40] FALCIONI R, MORIWAKI T, DE OLIVEIRA D M, et al. Increased gibberellins and light levels promotes cell wall thickness and enhance lignin deposition in xylem fibers[J]. Front Plant Sci, 2018, 9:1391. doi:10.3389/fpls.2018.01391.
    [41] SIMARD S, GIOVANNELLI A, TREYDTE K, et al. Intra-annual dynamics of non-structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands[J]. Tree Physiol, 2013,33(9):913–923. doi:10.1093/treephys/tpt075.
    [42] DIETZE M C, SALA A, CARBONE M S, et al. Nonstructural carbon in woody plants[J]. Annu Rev Plant Biol, 2014, 65:667–687. doi:10.1146/annurev-arplant-050213-040054.
    [43] BARBAROUX C, BRéDA N. Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees[J]. Tree Physiol, 2002, 22(17):1201–1210. doi:10.1093/treephys/22.17.1201.
    [44] PéREZ-DE-LIS G, OLANO J M, ROZAS V, et al. Environmental conditions and vascular cambium regulate carbon allocation to xylem growth in deciduous oaks[J]. Funct Ecol, 2017, 31:592–603. doi:10.1111/1365-2435.12789.
    [45] KALLIOKOSKI T, MAKINEN H, JYSKE T, et al. Effects of nutrient optimization on intra-annual wood formation in Norway spruce[J].Tree Physiol, 2013, 33(11):1145–1155. doi:10.1093/treephys/tpt078.
    [46] LUPI C, MORIN H, DESLAURIERS A, et al. Increasing nitrogen availability and soil temperature:Effects on xylem phenology and anatomy of mature black spruce[J]. Can J For Res, 2012, 42(7):1277–1288. doi:10.1139/x2012-055.
    [47] D’ORANGEVILLE L, C?TéB, HOULE D, et al. A three-year increase in soil temperature and atmospheric N deposition has minor effects on the xylogenesis of mature balsam fir[J]. Trees, 2013, 27(6):1525–1536. doi:10.1007/s00468-013-0899-4.
    [48] DAO M C E, ROSSI S, WALSH D, et al. A 6-year-long manipulation with soil warming and canopy nitrogen additions does not affect xylem phenology and cell production of mature black spruce[J]. Front Plant Sci, 2015, 6:877. doi:10.3389/fpls.2015.00877.
    [49] ZHANG S K, HUANG J G, ROSSI S, et al. Intra-annual dynamics of xylem growth in Pinus massoniana submitted to an experimental nitrogen addition in central China[J]. Tree Physiol, 2017, 37(11):1546–1553. doi:10.1093/treephys/tpx079.
    [50] ZHANG S K, ROSSI S, HUANG J G, et al. Intra-annual dynamics of xylem formation in Liquidambar formosana subjected to canopy and understory N addition[J]. Front Plant Sci, 2018, 9:79. doi:10.3389/fpls.2018.00079.
    [51] YU B, HUANG J G, MA Q, et al. Comparison of the effects of canopy and understory nitrogen addition on xylem growth of two dominant species in a warm temperate forest, China[J]. Dendrochronologia,2019, 56:125604. doi:10.1016/j.dendro.2019.125604.
    [52] DAIL D B, HOLLINGER D Y, DAVIDSON E A, et al. Distribution of nitrogen-15 tracers applied to the canopy of a mature spruce-hemlock stand, Howland, Maine, USA[J]. Oecologia, 2009, 160(3):589–599.doi:10.1007/s00442-009-1325-x.
    [53] ZHANG W, SHEN W J, ZHU S D, et al. CAN canopy addition of nitrogen better illustrate the effect of atmospheric nitrogen deposition on forest ecosystem?[J]. Sci Rep, 2015, 5:11245. doi:10.1038/srep11245.
    [54] JIANG X Y, LIU N, LU X K, et al. Canopy and understory nitrogen addition increase the xylem tracheid size of dominant broadleaf species in a subtropical forest of China[J]. Sci Total Environ, 2018, 642:733–741. doi:10.1016/j.scitotenv.2018.06.133.
    [55] ROSSI S, ANFODILLO T,?UFAR K, et al. Pattern of xylem phenollogy in conifers of cold ecosystems at the Northern Hemisphere[J].Glob Change Biol, 2016, 22(11):3804–3813. doi:10.1111/gcb.13317.
    [56] DELPIERRE N, LIREUX S, HARTIG F, et al. Chilling and forcing temperatures interact to predict the onset of wood formation in Northern Hemisphere conifers[J]. Glob Change Biol, 2019, 25:1089–1105. doi:10.1111/gcb.14539.
    [57] HUANG J G, GUO X L, ROSSI S, et al. Intra-annual wood formation of subtropical Chinese red pine shows better growth in dry season than wet season[J]. Tree Physiol, 2018, 38(8):1225–1236. doi:10.1111/nph.12859.
    [58] LI X X, LIANG E Y, GRICAR J, et al. Critical minimum temperature limits xylogenesis and maintains treelines on the southeastern Tibetan Plateau[J]. Sci Bull, 2017, 62(11):804–812. doi:10.1016/j.scib.2017.04.025.
    [59] ZWEIFEL R, ZIMMERMANN L, ZEUGIN F, et al. Intra-annual radial growth and water relations of trees:Implications towards a growth mechanism[J]. J Exp Bot, 2016, 57(6):1445–1459. doi:10.1093/jxb/erj125.
    [60] VIEIRA J, CAMPELO F, ROSSI S, et al. Adjustment capacity of maritime pine cambial activity in drought-prone environments[J].PLoS One, 2015, 10(5):e0126223. doi:10.1371/journal.pone.0126223.
    [61] REN P, ROSSI S, CAMARERO J J, et al. Critical temperature and precipitation thresholds for the onset of xylogenesis of Juniperus przewalskii in a semi-arid area of the north-eastern Tibetan Plateau[J].Ann Bot, 2017, 121:617–624. doi:10.1093/aob/mcx188.
    [62] TOTTI de L N O, da SILVA M R, NOGUEIRA A, et al. Duration of cambial activity is determined by water availability while cambial stimulus is day-length dependent in a Neotropical evergreen species[J].Environ Exp Bot, 2017, 141:50–59. doi:10.1016/j.envexpbot.2017.07.001.
    [63] ROSSI S, DESLAURIERS A, ANFODILLO T, et al. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length[J]. New Phytol, 2006, 170(2):301–310. doi:10.1111/j.1469-8137.2006.01660.x.
    [64] KORNER C. A re-assessment of high elevation treeline positions and their explanation[J]. Oecologia, 1998, 115:445–459.
    [65] LILLEY J L S, GEE C W, SAIRANEN I, et al. An endogenous carbonsensing pathway triggers increased auxin flux and hypocotyl elongation[J]. Plant Physiol, 2012, 160(4):2261–2270. doi:10.1104/pp.112.205575.
    [66] SCHRADER J, BABA K, MAY S T, et al. Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals[J]. Proc Natl Acad Sci USA,2003, 100(17):10096–10101. doi:10.1073/pnas.1633693100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700