用户名: 密码: 验证码:
土壤-水稻系统砷的生物地球化学过程研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Arsenic biogeochemical processing in the soil–rice system
  • 作者:吴川 ; 安文慧 ; 薛生国 ; 江星星 ; 崔梦倩 ; 钱子妍
  • 英文作者:WU Chuan;AN Wen-hui;XUE Sheng-guo;JIANG Xing-xing;CUI Meng-qian;QIAN Zi-yan;School of Metallurgy and Environment,Central South University;
  • 关键词:水稻 ; ; 土壤 ; ; 铁循环
  • 英文关键词:rice;;arsenic;;soil;;silicate;;iron cycle
  • 中文刊名:农业环境科学学报
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:中南大学冶金与环境学院;
  • 出版日期:2019-07-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:07
  • 基金:国家自然科学基金项目(41771512);; 湖南省湖湘青年英才项目(2018RS3004)~~
  • 语种:中文;
  • 页:7-17
  • 页数:11
  • CN:12-1347/S
  • ISSN:1672-2043
  • 分类号:X142;X53
摘要
本文综述了具有不同渗氧能力基因型水稻对土壤砷结合形态、水稻根表铁膜、砷吸收的影响以及不同根际氧化还原条件对土壤砷形态、水稻砷积累、砷转运载体表达的影响,分析了硅的不同施加量对水稻砷吸收的研究进展及其作用机制,从土壤铁矿物氧化和还原两个方面总结了根际铁循环对砷环境行为的影响以及对砷污染土壤修复的潜在价值,以期为最终降低水稻砷吸收提供理论参考。微生物介导的铁氧化还原对砷的环境行为如砷的溶解释放、吸附沉淀、形态转化等有重要影响,而铁细菌的胞外电子传递过程促进了铁的矿物相转化并耦合砷的钝化,在未来工作中值得进一步关注和研究。
        Arsenic(As)contamination of paddy soils in south China has received increasing attention, as it has caused severe rice contamination and negatively affects the health of millions of people who rely on rice as a staple food. The As biogeochemical process in soil contributes critically in the control of As contamination. In this article, the mechanism of As uptake and translocation in the soil–plant system has been summarized. In addition, the effect of radial oxygen loss(ROL)of different rice genotypes on As fractionation in soil, Fe plaque formation, and As accumulation in rice and the effect of water management on As speciation in soil, As uptake, and expression of As transporters in rice have been systematically reviewed. Rice genotypes with high ROL formed extra Fe plaque on roots, which reduced As uptake in rice. Compared with continuous flooding, water management with intermittent flooding and aerobic soil conditions significantly reduced As uptake and accumulation in rice. Moreover, the effect of Si application to soil on As uptake in rice and related mechanisms were examined, with the Si/As ratio in soils the major factor controlling the As uptake in rice. In addition, the effect of Fe redox processes on As biogeochemical behaviors were studied. The microorganism-mediated Fe redox reaction had significant influence on As behaviors such as dissolution, release, adsorption, coprecipitation, and speciation. Moreover, the extracellular electron transfer process of Fe oxidation and reduction bacteria significantly impacted the transformation of Fe minerals and related As immobilization in soils, which deserves further attention in future research.
引文
[1]Zhu Y G,Yoshinaga M,Zhao F J,et al.Earth abides arsenic biotransformations[J].Annual Review Earth Planetary Sciences,2014,42(1):443-467.
    [2]Halder D,Bhowmick S,Biswas A,et al.Risk of arsenic exposure from drinking water and dietary components:Implications for risk management in rural Bengal[J].Environmental Science&Technology,2013,47(2):1120-1127.
    [3]Zhao F J,Ma Y,Zhu Y G,et al.Soil contamination in China:Current status and mitigation strategies[J].Environmental Science&Technology,2015,49(2):750-759.
    [4]Wu C,Wang Q L,Xue S G,et al.Do aeration conditions affect arsenic and phosphate accumulation and phosphate transporter expression in rice(Oryza sativa L.)?[J].Environmental Science and Pollution Research,2016,25(1):43-51.
    [5]Wu C,Zou Q,Xue S G,et al.Effects of silicon(Si)on arsenic(As)accumulation and speciation in rice(Oryza sativa L.)genotypes with different radial oxygen loss(ROL)[J].Chemosphere,2015,138(5):447-453.
    [6]Wu C,Ye Z H,Shu W S,et al.Arsenic accumulation and speciation in rice are affected by root aeration and variation of genotypes[J].Journal of Experimental Botany,2011,62(8):2889-2898.
    [7]Xu X Y,Mcgrath S P,Meharg A A,et al.Growing rice aerobically markedly decreases arsenic accumulation[J].Environmental Science&Technology,2008,42(15):5574-5579.
    [8]Pan W S,Wu C,Xue S G,et al.Arsenic dynamics in the rhizosphere and its sequestration on rice roots as affected by root oxidation[J].Journal of Environmental Sciences,2014,26(4):892-899.
    [9]Ying S C,Kocar B D,Griffis S D,et al.Competitive microbially and Mn oxide mediated redox processes controlling arsenic speciation and partitioning[J].Environmental Science&Technology,2011,45(13):5572-5579.
    [10]Wu C,Zou Q,Xue S G,et al.The effect of silicon on iron plaque formation and arsenic accumulation in rice genotypes with different radial oxygen loss(ROL)[J].Environmental Pollution,2016,212(5):27-33.
    [11]Wu C,Zou Q,Xue S G,et al.Effect of silicate on arsenic fractionation in soils and its accumulation in rice plants[J].Chemosphere,2016,165:478-486.
    [12]Seyfferth A L,Fendorf S.Silicate mineral impacts on the uptake and storage of arsenic and plant nutrients in rice(Oryza sativa L.)[J].Environmental Science&Technology,2012,46(24):13176-13183.
    [13]Ma J F,Yamaji N,Mitani N,et al.Transporters of arsenite in rice and their role in arsenic accumulation in rice grain[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(29):9931-9935.
    [14]Lomax C,Liu W J,Wu L,et al.Methylated arsenic species in plants originate from soil microorganisms[J].New Phytologist,2012,193(3):665-672.
    [15]Kersten M,Daus B.Silicic acid competes for dimethylarsinic acid(DMA)immobilization by the iron hydroxide plaque mineral goethite[J].Science of the Total Environment,2015,508:199-205.
    [16]Wang X,Peng B,Tan C Y,et al.Recent advances in arsenic bioavailability,transport,and speciation in rice[J].Environmental Science and Pollution Research,2015,22(8):5742-5750.
    [17]Zhao F J,Mcgrath S P,Meharg A A.Arsenic as a food chain contaminant:Mechanisms of plant uptake and metabolism and mitigation strategies[J].Annual Review of Plant Biology,2010,61(1):535-559.
    [18]Wu C,Ye Z H,Li H,et al.Do radial oxygen loss and external aeration affect iron plaque formation and arsenic accumulation and speciation in rice?[J].Journal of Experimental Botany,2012,63(8):2961-2970.
    [19]Kopittke P M,de Jonge M D,Wang P,et al.Laterally-resolved speciation of arsenic in roots of wheat and rice using[J].New Phytologist,2014,201(4):1251-1262.
    [20]Seyfferth A L,Webb S M,Andrews J C,et al.Defining the distribution of arsenic species and plant nutrients in rice(Oryza sativa L.)from the root to the grain[J].Geochim et Cosmochim Acta,2011,75(21):6655-6671.
    [21]Carey A M,Scheckel K G,Lombi E,et al.Grain unloading of arsenic species in rice[J].Plant Physiol,2010,152(1):309-319.
    [22]Carey A,Norton G J,Deacon C,et al.Phloem transport of arsenic species from flag leaf to grain during grain filling[J].New Phytologist,2011,192(1):87-98.
    [23]Song W Y,Yamaki T,Yamaji N,et al.A rice ABC transporter,OsABCC1,reduces arsenic accumulation in the grain[J].Proceedings of the National Academy of Sciences,2014,111(44):15699-15704.
    [24]Syu C H,Jiang P Y,Huang H H,et al.Arsenic sequestration in iron plaque and its effect on As uptake by rice plants grown in paddy soils with high contents of As,iron oxides,and organic matter[J].Soil Science&Plant Nutrtion,2013,59(3):463-471.
    [25]Wu C,Li H,Ye Z H,et al.Effects of As levels on radial oxygen loss and As speciation in rice[J].Environmental Science and Pollution Research,2013,20(12):8334-8341.
    [26]Somenahally A C,Hollister E B,Yan W G,et al.Water management impacts on arsenic speciation and iron-reducing bacteria in contrasting rice-rhizosphere compartments[J].Environmental Science&Technology,2011,45(19):8328-8335.
    [27]Li R Y,Stroud J L,Ma J F,et al.Mitigation of arsenic accumulation in rice with water management and silicon fertilization[J].Environmental Science&Technology,2009,43(10):3778-3783.
    [28]Takahashi Y,Minamikawa R,Hattori K H,et al.Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods[J].Environmental Science&Technology,2004,38(4):1038-1044.
    [29]Hua B,Yan W G,Wang J M,et al.Arsenic accumulation in rice grains:Effects of cultivars and water management practices[J].Environmental Engineering Science,2011,28(8):591-596.
    [30]Yamaguchi N,Nakamura T,Dong D,et al.Arsenic release from flooded paddy soils is influenced by speciation,Eh,pH,and iron dissolution[J].Chemosphere,2011,83(7):925-932.
    [31]Honma T,Ohba H,Kaneko-Kadokura A,et al.Optimal soil Eh,pH,and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains[J].Environmental Science&Technology,2016,50(8):4178-4185.
    [32]Li H,Wu C,Ye Z H,et al.Uptake kinetics of different arsenic species in lowland and upland rice colonized with Glomus intraradices[J].Journal of Hazardous Materials,2011,194(5):414-421.
    [33]Norton G J,Pinson S R M,Alexander J,et al.Variation in grain arsenic assessed in a diverse panel of rice(Oryza sativa)grown in multiple sites[J].New Phytologist,2012,193(3):650-664.
    [34]Norton G J,Adomako E E,Deacon C M,et al.Effect of organic matter amendment,arsenic amendment and water management regime on rice grain arsenic species[J].Environmental Pollution,2013,177(4):38-47.
    [35]Hu P,Ouyang Y,Wu L,et al.Effects of water management on arsenic and cadmium speciation and accumulation in an upland rice cultivar[J].Journal of Environmental Sciences,2015,27(1):225-231.
    [36]Wu C,Huang L,Xue S G,et al.Oxic and anoxic conditions affect arsenic(As)accumulation and arsenite transporter expression in rice[J].Chemosphere,2017,168:969-975.
    [37]Lee C H,Huang H H,Syu C H,et al.Increase of As release and phytotoxicity to rice seedlings in As-contaminated paddy soils by Si fertilizer application[J].Journal of Hazardous Materials,2014,276(9):253-261.
    [38]Liu W J,Mcgrath S P,Zhao F J.Silicon has opposite effects on the accumulation of inorganic and methylated arsenic species in rice[J].Plant&Soil,2014,376(1/2):423-431.
    [39]Fleck A T,Mattusch J,Schenk M K.Silicon decreases the arsenic level in rice grain by limiting arsenite transport[J].Journal of Plant Nutrition and Soil Science,2013,176(5):785-794.
    [40]Bogdan K,Schenk M K.Arsenic in rice(Oryza sativa L.)related to dynamics of arsenic and silicic acid in paddy soils[J].Environmental Science&Technology,2008,42(21):7885-7890.
    [41]Guo W,Zhu Y G,Liu W J,et al.Is the effect of silicon on rice uptake of arsenate(AsV)related to internal silicon concentrations,iron plaque and phosphate nutrition?[J].Environmental Pollution,2007,148(1):251-257.
    [42]Ackermann J,Vetterlein D,Kuehn T,et al.Minerals controlling arsenic distribution in flood plain soils[J].European Journal of Soil Science,2010,61(4):588-598.
    [43]石荣,贾永锋,王承智.土壤矿物质吸附砷的研究进展[J].土壤通报,2007,38(3):584-589.SHI Rong,JIA Yong-feng,WANG Cheng-zhi.A review of arsenic adsorption onto mineral constitutions in the soft[J].Chinese Journal of Soil Science,2007,38(3):584-589.
    [44]Guo H M,Ren Y,Liu Q,et al.Enhancement of arsenic adsorption during mineral transformation from siderite to goethite:Mechanism and application[J].Environmental Science&Technology,2013,47(2):1009-1016.
    [45]Yang C,Li S,Liu R,et al.Effect of reductive dissolution of iron(hydr)oxides on arsenic behavior in a water-sediment system:First release,then adsorption[J].Ecological Engineering,2015,83:176-183.
    [46]Borch T,Kretzschmar R,Kappler A,et al.Biogeochemical redox pro-387cesses and their impact on contaminant dynamics[J].Environmental Science&Technology,2010,44(1):15-23.
    [47]Kappler A.Geomicrobiological cycling of iron[J].Reviews in Mineralogy&Geochemistry,2005,59(1):85-108.
    [48]O′Loughlin E J,Gorski C A,Scherer M M,et al.Effects of oxyanions,natural organic matter,and bacterial cell numbers on the bioreduction of lepidocrocite(γ-FeOOH)and the formation of secondary mineralization[J].Environmental Science&Technology,2010,12(44):4570-4576.
    [49]Laverman A M,Blum J S,Schaefer J K,et al.Growth of strain SES-3with arsenate and other diverse electron acceptors[J].Applied&Environmental Microbiology,1995,61(10):3556-3561.
    [50]Lovley D R,Holmes D E,Nevin K P.Dissimilatory Fe(Ⅲ)and Mn(Ⅳ)reduction[J].Advances in Microbial Physiology,2004,49(2):219-286.
    [51]Yan B,MethéB A,Lovley D R,et al.Computational prediction of conserved operons and phylogenetic footprinting of transcription regulatory elements in the metal-reducing bacterial family Geobacteraceae[J].Journal of Theoretical Biology,2004,230(1):133-144.
    [52]Amstaetter K,Borch T,Larese-Casanova P,et al.Redox transformation of arsenic by Fe(Ⅱ)-activated goethite(α-FeOOH)[J].Environmental Science&Technology,2010,44(1):102-108.
    [53]Hohmann C,Winkler E,Morin G,et al.Anaerobic Fe(Ⅱ)-oxidizing bacteria show as resistance and immobilize as during Fe(Ⅲ)mineral precipitation[J].Environmental Science&Technology,2010,44(1):94-101.
    [54]Stroud J L,Norton G J,Islam M R,et al.The dynamics of arsenic in four paddy fields in the Bengal delta[J].Environmental Pollution,2011,159(4):947-953.
    [55]Bennett W W,Teasdale P R,Panther J G,et al.Investigating arsenic speciation and mobilization in sediments with DGT and DET:A mesocosm evaluation of oxic-anoxic transitions[J].Environmental Science&Technology,2012,46(7):3981-3989.
    [56]Jiang S H,Lee J H,Kim D H,et al.Differential arsenic mobilization from As-bearing ferrihydrite by iron-respiring Shewanella Strains with different arsenic-reducing activities[J].Environmental Science&Technology,2013,47(15):8616-8623.
    [57]Thomasarrigo L K,Mikutta C,Lohmayer R,et al.Sulfidization of organic freshwater flocs from a minerotrophic peatland:speciation changes of iron,sulfur,and arsenic[J].Environmental Science&Technology,2016,50(7):3607-3616.
    [58]Huang J H,Voegelin A,Pombo S A,et al.Influence of arsenate adsorption to ferrihydrite,goethite,and boehmite on the kinetics of arsenate reduction by Shewanella putrefaciens strain CN-32[J].Environmental Science&Technology,2011,45(18):7701-7709.
    [59]Saalfield S L,Bostick B C.Changes in iron,sulfur,and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems[J].Environmental Science&Technology,2009,43(23):8787-8793.
    [60]Kocar B D,Borch T,Fendorf S.Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite[J].Geochimica et Cos-20197-mochimica Acta,2010,74(3):980-994.
    [61]汪明霞,王娟,司友斌.Shewanella oneidensis MR-1异化还原Fe(Ⅲ)介导的As(Ⅲ)氧化转化[J].中国环境科学,2014,34(9):2368-2373.WANG Ming-xia,WANG Juan,SI You-bin.As(Ⅲ)oxidization coupled to Fe(Ⅲ)reduction by Shewanella oneidensis MR-1[J].China Environmental Science,2014,34(9):2368-2373.
    [62]司友斌,王娟.异化铁还原对土壤中重金属形态转化及其有效性影响[J].环境科学,2015,39(9):3533-3542.SI You-bin,WANG Juan.Influence of dissimilatory iron reduction on the speciation and bioavailability of heavy metals in soil[J].Environmental Science,2015,39(9):3533-3542.
    [63]吴云当,李芳柏,刘同旭.土壤微生物-腐殖质-矿物间的胞外电子传递机制研究进展[J].土壤学报,2016,53(2):277-291.WU Yun-dang,LI Fang-bai,LIU Tong-xu.Mechanism of extracellular electron transfer among microbe-humus-mineral in soil:A review[J].Acta Pedologica Sinica,2016,53(2):277-291.
    [64]Piepenbrock A,Schr?der C,Kappler A.Electron transfer from humic substances to biogenic and abiogenic Fe(Ⅲ)oxyhydroxide minerals[J].Environmental Science&Technology,2014,48(3):1656-1664.
    [65]Zhou G W,Yang X R,Li H,et al.Electron shuttles enhance anaerobic ammonium oxidation coupled to iron(Ⅲ)reduction[J].Environmental Science&Technology,2016,50(17):9298-9307.
    [66]Chen Z,Wang Y P,Jiang X L,et al.Dual roles of AQDS as electron shuttles for microbes and dissolved organic matter involved in arsenic and iron mobilization in the arsenic-rich sediment[J].Science of the Total Environment,2017,574:1684-1694.
    [67]Chen Z,Wang Y P,Xia D,et al.Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition[J].Journal of Hazardous Materials,2016,311:20-29.
    [68]Yin D,Wang X,Chen C,et al.Varying effect of biochar on Cd,Pb and As mobility in a multi-metal contaminated paddy soil[J].Chemosphere,2016,152:196-206.
    [69]Croal L R,Jiao Y Q,Newman D K.The fox operon from Rhodobacter strain SW2 promotes phototrophic Fe(Ⅱ)oxidation in Rhodobacter capsulatus SB1003[J].Journal of Bacteriology,2006,189(5):1774-1782.
    [70]林超峰,龚骏.嗜中性微好氧铁氧化菌研究进展[J].生态学报,2012,32(18):5889-5899.LIN Chao-feng,GONG Jun.Recent progress in research on neutrophilic,microaerophilic iron(Ⅱ)-oxidizing bacteria[J].Acta Ecologica Sinica,2012,32(18):5889-5899.
    [71]Chen X P,Zhu Y G,Hong M N,et al.Effects of different forms of nitrogen fertilizers on arsenic uptake by rice plants[J].Environmental Toxicology&Chemistry,2008,27(4):881-887.
    [72]王兆苏,王新军,陈学萍,等.微生物铁氧化作用对砷迁移转化的影响[J].环境科学学报,2011,31(2):328-333.WANG Zhao-su,WANG Xin-jun,CHEN Xue-ping,et al.The effect of microbial iron oxidation on arsenic mobility and transformation[J].Acta Scientiae Circumstantiae,2011,31(2):328-333.
    [73]Senn D B,Hemond H F.Nitrate controls on iron and arsenic in an Urban Lake[J].Science,2002,296(5577):2373-2376.
    [74]Okibe N,Koga M,Sasaki K,et al.Simultaneous oxidation and immobilization of arsenite from refinery waste water by thermoacidophilic iron-oxidizing archaeon,Acidianus brierleyi[J].Minerals Engineering,2013,48(7):126-134.
    [75]黎俏文,秦俊豪,陈桂葵,等.H2O2介导的Fenton反应对砷镉污染下水稻生物量的影响[J].农业环境科学学报,2015,34(7):1233-1238.LI Qiao-wen,QIN Jun-hao,CHEN Gui-kui,et al.Effect of hydrogen peroxide induced Fenton reaction on biomass of rice in soil contaminated by Cd and As[J].Journal of Agro-Environment Science,2015,34(7):1233-1238.
    [76]Qin J H,Li H S,Lin C X.Fenton process-affected transformation of roxarsone in paddy rice soils:Effects on plant growth and arsenic accumulation in rice grain[J].Ecotoxicology and Environmental Safety,2016,130:4-10.
    [77]Qin J H,Li Y J,Feng M L,et al.Fenton reagent reduces the level of arsenic in paddy rice grain[J].Geoderma,2017,307:73-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700