用户名: 密码: 验证码:
微量磷灰石中磷酸根氧同位素分析方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analytical Method for δ~(18)O of Phosphate in Trace Apatite
  • 作者:杜勇 ; 朱园园 ; 宋虎跃 ; 王宇航 ; 宋海军 ; 邱海鸥 ; 童金南
  • 英文作者:Du Yong;Zhu Yunayuan;Song Huyue;Wang Yuhang;Song Haijun;Qiu Haiou;Tong Jinnan;State Key Laboratory of Biogeology and Environment Geology,China University of Geosciences;Wuhan Center of Geological Survey,China Geological Survey;Faculty of Materials Sciences and Chemistry,China University of Geosciences;
  • 关键词:磷灰石 ; 磷酸根氧同位素 ; 分析方法 ; 生物地球化学
  • 英文关键词:bioapatite;;oxygen isotope of phosphate;;analytical method;;biogeochemistry
  • 中文刊名:地球科学
  • 英文刊名:Earth Science
  • 机构:中国地质大学生物地质与环境地质国家重点实验室;中国地质调查局武汉地质调查中心;中国地质大学材料与化学学院;
  • 出版日期:2018-03-02 14:13
  • 出版单位:地球科学
  • 年:2019
  • 期:02
  • 基金:国家自然基金项目(Nos.41402302,41530104,41661134047);; 生物地质与环境地质国家重点实验室自主课题(Nos.GKZ14Y663,GBL11603);; 中国地质大学大型仪器设备改造项目(No.DY-201617)
  • 语种:中文;
  • 页:106-112
  • 页数:7
  • CN:42-1874/P
  • ISSN:1000-2383
  • 分类号:P597
摘要
生物磷灰石壳体的磷酸根氧同位素组成是重建古温度理想指标之一,在古环境研究中具有重要意义.针对牙形石等磷灰石量极少的情况,稳定可靠的前处理方法是分析其δ~(18)O_(PO4)的重要保障,目前仅有少数国外实验室已建立了相关提取分析方法.结合这些方法的优缺点对分析步骤进行改进优化,建立了微量磷灰石的磷酸根氧同位素分析方法,通过硝酸消解磷灰石并除去非磷酸根氧,利用KF溶液沉淀法分离Ca~(2+),采用氨缓冲溶液形式调节pH,并加入AgNO_3溶液以氨挥发法将PO43-转化成Ag_3PO_4结晶分离,气体稳定同位素质谱仪在线测定Ag_3PO_4氧同位素组成.结果表明,方法全流程未产生明显的氧同位素分馏,样品最低仅需0.2mg,标准偏差小于0.2‰(1σ),与目前国际报道的分析精度一致.
        The oxygen isotope composition of phosphate( δ~(18)O_(PO4))in bioapatite plays a significant role in paleo-environmental research as one of the ideal proxies for paleo-temperature reconstruction.However,for trace bioapatite(e.g.,conodonts),a reliable pre-treatment technology is quite important and difficult for its δ~(18)O_(PO4) analysis,resulting in analytical technique established only in several overseas laboratories.Here we combine the advantages of those methods and present a protocol on the analysis of δ~(18)O_(PO4) as Ag_3PO_4 for bioapatite of total sample size as small as 0.2 mg using a thermal conversion elemental analyzer(TC/EA)coupled to a continuous flow isotope ratio mass spectrometer(CF-IRMS)via a helium stream.Ag_3PO_4 is precipitated by NH3 buffer method after apatite being dissolved with nitric acid,Ca~(2+)being removed with KF solution and the solution being neutralized with ammonia buffer solution.The results indicate that analysis of δ~(18)O_(PO4) maintains an external precision of±0.2‰(1σ),meeting the international analytical standards.This method for analyzing δ~(18)O_(PO4) of phosphate extracted from bioapatite is robust to be used to reconstruct paleo-temperature.
引文
Amiot,R.,Wang,X.,Zhou,Z.,et al.,2015.Environment and Ecology of East Asian Dinosaurs during the Early Cretaceous Inferred from Stable Oxygen and Carbon Isotopes in Apatite.Journal of Asian Earth Sciences,98:358-370.https://doi.org/10.1016/j.jseaes.2014.11.032
    Chen,J.,Shen,S.Z.,Li,X.H.,et al.,2016.High-Resolution SIMS Oxygen Isotope Analysis on Conodont Apatite from South China and Implications for the End-Permian Mass Extinction.Palaeogeography,Palaeoclimatology,Palaeoecology,448(448):26-38.https://doi.org/10.1016/j.palaeo.2015.11.025
    Elrick,M.,Witzke,B.,2016.Orbital-Scale Glacio-Eustasy in the Middle Devonian Detected Using Oxygen Isotopes of Conodont Apatite:Implications for Long-Term Greenhouse-Icehouse Climatic Transitions.Palaeogeography,Palaeoclimatology,Palaeoecology,445:50-59.https://doi.org/10.1016/j.palaeo.2015.12.019
    Gehler,A.,Gingerich,P.D.,Pack,A.,2016.Temperature and Atmospheric CO2 Concentration Estimates through the PETM Using Triple Oxygen Isotope Analysis of Mammalian Bioapatite.Proceedings of the National Academy of Sciences,113(28):7739-7744.https://doi.org/10.1073/pnas.1518116113
    Griffin,J.M.,Montanez,I.P.,Matthews,J.A.,2015.A Refined Protocol forδ18 OPO4 Analysis of Conodont Bioapatite.Chemical Geology,417:11-20.https://doi.org/10.1016/j.chemgeo.2015.08.025
    Halas,S.,Skrzypek,G.,Meier-Augenstein,W.,et al.,2011.Inter-Laboratory Calibration of New Silver Orthophosphate Comparison Materials for the Stable Oxygen Isotope Analysis of Phosphates.Rapid Communications in Mass Spectrometry Rcm.,25(5):579-584.https://doi.org/10.1002/rcm.4892
    Joachimski,M.M.,Breisig,S.,Buggisch,W.,et al.,2009.Devonian Climate and Reef Evolution:Insights from Oxygen Isotopes in Apatite.Earth&Planetary Science Letters,284(3-4):599-609.https://doi.org/10.1016/j.epsl.2009.05.028
    LaPorte,D.F.,Holmden,C.,Patterson,W.P.,2009.Oxygen Isotope Analysis of Phosphate:Improved Precision Using TC/EA CF-IRMS+.Journal of Mass Spectrometry,44(6):879-890.https://doi.org/10.1002/jms.1549
    ONeil,J.R.,Vennemann,T.W.,Mckenzie,W.F.,2003.Effects of Speciation on Equilibrium Fractionations and Rates of Oxygen Isotope Exchange between(PO4)aq,and H2O.Geochimica et Cosmochimica Acta,67(17):3135-3144.oi:10.1016/s0016-7037(02)00970-5
    Pucéat,E.,Joachimski,M.M.,Bouilloux,A.,et al.,2010.Revised Phosphate-Water Fractionation Equation Reassessing Paleotemperatures Derived from Biogenic Apatite.Earth&Planetary Science Letters,298(1-2):135-142.https://doi.org/10.1016/j.epsl.2010.07.034
    Qiao,P.J.,Zhu,W.L.,Shao,L.,et al.,2015.Carbonate Stable Isotope Stratigraphy of Well Xike-1,Xisha Islands.Earth Science,40(4):725-732(in Chinese with English abstract).
    Quinton,P.C.,Macleod,K.G.,2014.Oxygen Isotopes from Conodont Apatite of the Midcontinent,US:Implications for Late Ordovician Climate Evolution.Palaeogeography,Palaeoclimatology,Palaeoecology,404(3):57-66.https://doi.org/10.1016/j.palaeo.2014.03.036
    Rosenau,N.A.,Tabor,N.J.,Herrmann,A.D.,2014.Assessing the Paleoenvironmental Significance of Middle-Late Pennsylvanian Conodont Apatiteδ18 O Values in the Illinois Basin.Palaios,29(6):250-265.https://doi.org/10.2110/palo.2013.112
    Sun,Y.,Joachimski,M.M.,Wignall,P.B.,et al.,2012.Lethally Hot Temperatures during the Early Triassic Greenhouse.Science,338(6105):366-370.https://doi.org/10.1126/science.1224126
    Sun,Y.D.,Wignall,P.B.,Joachimski,M.M.,et al.,2016a.Climate Warming,Euxinia and Carbon Isotope Perturbations during the Carnian(Triassic)Crisis in South China.Earth&Planetary Science Letters,444:88-100.https://doi.org/10.1016/j.epsl.2016.03.037
    Sun,Y.D.,Wiedenbeck,M.,Joachimski,M.M.,2016b.Chemical and Oxygen Isotope Composition of Gem-Quality Apatites:Implications for Oxygen Isotope Reference Materials for Secondary Ion Mass Spectrometry(SIMS).Chemical Geology,440:164-178.https://doi.org/10.1016/j.chemgeo.2016.07.013
    Vennemann,T.W.,Fricke,H.C.,Blake,R.E.,2002.Oxygen Isotope Analysis of Phosphates:A Comparison of Techniques for Analysis of Ag3PO4.Chemical Geology,185(3-4):321-336.https://doi.org/10.1016/s0009-2541(01)00413-2
    Wang,R.,Chen,J.B.,Zhao,L.S.,et al.,2013.In Situ Oxygen Isotope Analysis of Conodonts by SIMS and Its Application for Paleo-Sea Surface Temperature.Global Geology,32(4):652-658(in Chinese with English abstract).
    Yang,K.H.,Yu,X.G.,Chu,F.Y.,et al.,2016.Environmental Changes in Methane Seeps Recorded by Carbon and Oxygen Isotopes in the Northern South China Sea.Earth Science,41(9):1206-1215(in Chinese with English abstract).
    Zhang,H.,Wang,J.N.,Zhu,Y.G.,et al.,2015.Research and Application of Analytical Technique onδ18 Op of Inorganic Phosphate in Soil.Chinese Journal of Analytical Chemistry,43(2):187-192(in Chinese with English abstract).
    Zhou,L.Q.,Ian,S.,Liu,J.H.,et al.,2012.Methodology of SHRIMP In-Situ O Isotope Analysis on Conodont.Acta Geologica Sinica,86(4):611-618(in Chinese with English abstract).
    乔培军,朱伟林,邵磊,等,2015.西沙群岛西科I井碳酸盐岩稳定同位素地层学.地球科学,40(4):725-732.
    王润,陈剑波,赵来时,等,2013.二次离子质谱微区原位牙形石氧同位素分析及其在古海表水温记录中的应用.世界地质,32(4):652-658.
    杨克红,于晓果,初凤友,等,2016.南海北部甲烷渗漏系统环境变化的碳、氧同位素记录.地球科学,41(7):1206-1215.
    张晗,王佳妮,朱永官,等,2015.土壤无机磷酸盐中氧同位素分析方法的研究及应用.分析化学,43(2):187-192.
    周丽芹,Ian,S.,刘建辉,等,2012.牙形石SHRIMP微区原位氧同位素分析方法.地质学报,86(4):611-618.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700