用户名: 密码: 验证码:
污泥停留时间对餐厨垃圾与剩余污泥中温厌氧混合发酵系统的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Sludge Retention Time on the Performance and Stability of Mesophilic Anaerobic Co-digestion of Food Waste with Waste Activated Sludge
  • 作者:袁宏林 ; 马静 ; 邢保山 ; 温俊伟 ; 韩宇乐 ; 李倩 ; 王晓昌
  • 英文作者:YUAN Hong-lin;MA Jing;XING Bao-shan;WEN Jun-wei;HAN Yu-le;LI Qian;WANG Xiao-chang;Key Laboratory of Northwest Water Resource,Environment and Ecology,Ministry of Education,International Science & Technology Cooperation Center for Urban Alternative Water Resources Development,Engineering Technology Research Center for Wastewater Treatment and Reuse,Shaanxi Province,Key Laboratary of Environmental Engineering,Shaanxi Province,School of Environmental &Municipal Engineering,Xi'an University of Architecture and Technology;
  • 关键词:厌氧混合发酵 ; 甲烷 ; 餐厨垃圾 ; 剩余污泥 ; 污泥停留时间(SRT) ; 稳定性
  • 英文关键词:anaerobic co-digestion;;methane;;food waste;;waste activated sludge;;sludge retention time(SRT);;stability
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:西安建筑科技大学环境与市政工程学院西北水资源与环境生态教育部重点实验室国家城市非传统水资源开发利用国际科技合作基地陕西省污水处理与资源化工程技术研究中心陕西省环境工程重点实验室;
  • 出版日期:2018-09-12 13:26
  • 出版单位:环境科学
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金项目(51608430);; 陕西省教育厅重点实验室项目(17JS077)
  • 语种:中文;
  • 页:484-492
  • 页数:9
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:X703
摘要
采用连续搅拌釜式反应器(CSTR)成功启动了餐厨垃圾与剩余污泥混合发酵平行系统,重点探究了不同污泥停留时间(SRT)缩减幅度对于餐厨垃圾和剩余污泥混合发酵系统的影响.结果表明,较大幅度地缩减SRT(> 8. 3 d)提升反应器运行负荷,不利于反应器的稳定运行;随着反应器运行负荷的增加,SRT缩减幅度应逐渐降低(5~0. 9 d),能够取得餐厨垃圾和剩余污泥混合发酵系统的高负荷稳定运行.经过282 d的运行,CSTR混合发酵系统能够在SRT为9. 1 d,进料负荷(以COD计)为(12. 9±1. 5) g·(L·d)~(-1)的条件下稳定运行,相应的甲烷产量为3. 94~4. 25 L·(L·d)~(-1),甲烷产率(以COD计)为288~302 m L·g-1,p H和挥发性脂肪酸(VFA,以COD计)分别稳定在7. 80~7. 83和0. 32~0. 39 g·L-1.此外,还探究了高负荷条件下餐厨垃圾和剩余污泥混合发酵污泥特性,结果表明,餐厨垃圾和剩余污泥混合发酵系统甲烷转化途径以乙酸转化途径为主,具有较高的乙酸、丙酸、丁酸和戊酸的产甲烷活性和辅酶F420的质量摩尔浓度.
        Two parallel digestion systems of food waste( FW) and waste-activated sludge( WAS) were successfully initiated using a continuous stirred-tank reactor( CSTR),and the effect of different reduction extents of sludge retention time( SRT) on the co-digestion of FW and WAS was investigated. SRT Reduction extents longer than 8. 3 d were not conducive to the stable operation of the codigestion system when the organic load rate( OLR) was increased. The reduction extent of SRT should be reduced gradually from 5 d to 0. 9 d to achieve high load and stable operation of the co-digestion of FW and WAS. After a long-term operation( approximately 282 d),the co-digestion reached stable operation at SRT of 9. 1 d and OLR( calculated by COD) of( 12. 9 ± 1. 5) g·(L·d)~(-1). The corresponding methane production,methane yield( calculated by COD),p H,and volatile fatty acid( VFA,calculated by COD) were3. 94-4. 25 L·(L·d)~(-1),288-302 m L·g-1,7. 80-7. 83,and 0. 32-0. 39 g·L-1,respectively. Additionly,the sludge characteristics of the co-digestion of FW and WAS under a high loading rate were also investigated. The results showed that the primary pathway of methane conversion was through acetic acid during the co-digestion of FW and WAS. Meanwhile,higher methanogenic activity of acetic acid,propionic acid,butyric acid,valeric acid,and coenzyme F420 concentration were also measured.
引文
[1] Zhang C S,Su H J,Baeyens J,et al. Reviewing the anaerobic digestion of food waste for biogas production[J]. Renewable and Sustainable Energy Reviews,2014,38:383-392.
    [2] Browne J D,Murphy J D. Assessment of the resource associated with biomethane from food waste[J]. Applied Energy,2013,104:170-177.
    [3] Ariunbaatar J,Panico A,Frunzo L,et al. Enhanced anaerobic digestion of food waste by thermal and ozonation pretreatment methods[J]. Journal of Environmental Management,2014,146:142-149.
    [4] Zhang C S,Su H J,Tan T W. Batch and semi-continuous anaerobic digestion of food waste in a dual solid-liquid system[J]. Bioresource Technology,2013,145:10-16.
    [5] Whiting A,Azapagic A. Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion[J]. Energy,2014,70:181-193.
    [6] Li Q,Yuwen C S,Cheng X R,et al. Responses of microbial capacity and community on the performance of mesophilic codigestion of food waste and waste activated sludge in a highfrequency feeding CSTR[J]. Bioresource Technology,2018,260:85-94.
    [7] Us E,Perendeci N A. Improvement of methane production from greenhouse residues:optimization of thermal and H2SO4pretreatment process by experimental design[J]. Chemical Engineering Journal,2012,181-182:120-131.
    [8] Zhang J X,Loh K C,Li W L,et al. Three-stage anaerobic digester for food waste[J]. Applied Energy,2017,194:287-295.
    [9] Zhang J X,Li W L,Lee J,et al. Enhancement of biogas production in anaerobic co-digestion of food waste and waste activated sludge by biological co-pretreatment[J]. Energy,2017,137:479-486.
    [10] Zahedi S,Icaran P,Yuan Z,et al. Assessment of free nitrous acid pre-treatment on a mixture of primary sludge and waste activated sludge:effect of exposure time and concentration[J].Bioresource Technology,2016,216:870-875.
    [11] Razaviarani V, Buchanan I D. Anaerobic co-digestion of biodiesel waste glycerin with municipal wastewater sludge:microbial community structure dynamics and reactor performance[J]. Bioresource Technology,2015,182:8-17.
    [12] Li Q,Li H,Wang G J,et al. Effects of loading rate and temperature on anaerobic co-digestion of food waste and waste activated sludge in a high frequency feeding system,looking in particular at stability and efficiency[J]. Bioresource Technology,2017,237:231-239.
    [13] Dai X H,Duan N N,Dong B,et al. High-solids anaerobic codigestion of sewage sludge and food waste in comparison with mono digestions:stability and performance[J]. Waste Management,2013,33(2):308-316.
    [14] Jang H M,Ha J H,Kim M S,et al. Effect of increased load of high-strength food wastewater in thermophilic and mesophilic anaerobic co-digestion of waste activated sludge on bacterial community structure[J]. Water Research,2016,99:140-148.
    [15] Heo N H,Park S C,Kang P H. Effects of mixture ratio and hydraulic retention time on single-stage anaerobic co-digestion of food waste and waste activated sludge[J]. Journal of Environmental Science and Health,Part A,2004,39(7):1739-1756.
    [16] Wang G J, Li Q, Gao X, et al. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar:performance and associated mechanisms[J]. Bioresource Technology,2018,250:812-820.
    [17] APHA. Standard methods for the examination of water and wastewater(21st ed.)[M]. Washington,DC:American Public Health Association,2005.
    [18] Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the Folin phenol reagent[J]. Journal of Biological Chemistry,1951,193(1):265-275.
    [19] DuBois M,Gilles K A,Hamilton J K,et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry,1956,28(3):350-356.
    [20] Reynolds P J, Colleran E. Evaluation and improvement of methods for coenzyme F420 analysis in anaerobic sludges[J].Journal of Microbiological Methods,1987,7(2-3):115-130.
    [21] Negi S,Dhar H,Hussain A,et al. Biomethanation potential for co-digestion of municipal solid waste and rice straw:a batch study[J]. Bioresource Technology,2018,254:139-144.
    [22]许之扬.餐厨垃圾固态厌氧消化过程内源性抑制效应研究[D].无锡:江南大学,2014.
    [23] Buswell A M,Mueller H F. Mechanism of methane fermentation[J]. Industrial&Engineering Chemistry,1952,44(3):550-552.
    [24] Zahedi S,Solera R,García-Morales J L,et al. Evaluation of the effect of glycerol supplementation on the anaerobic digestion of real municipal solid waste in batch mode[J]. Fuel,2017,193:15-21.
    [25] Rincón B,Borja R,González J M,et al. Influence of organic loading rate and hydraulic retention time on the performance,stability and microbial communities of one-stage anaerobic digestion of two-phase olive mill solid residue[J]. Biochemical Engineering Journal,2008,40(2):253-261.
    [26] Zahedi S,Rivero M,Solera R,et al. Mesophilic anaerobic codigestion of sewage sludge with glycerine:effect of solids retention time[J]. Fuel,2018,215:285-289.
    [27] Ahring B K,Sandberg M,Angelidaki I. Volatile fatty acids as indicators of process imbalance in anaerobic digestors[J].Applied Microbiology and Biotechnology,1995,43(3):559-565.
    [28] Liu X,Wang W,Shi Y C,et al. Pilot-scale anaerobic codigestion of municipal biomass waste and waste activated sludge in China:effect of organic loading rate[J]. Waste Management,2012,32(11):2056-2060.
    [29] Kafle G K,Kim S H. Sludge exchange process on two serial CSTRs anaerobic digestions:process failure and recovery[J].Bioresource Technology,2011,102(13):6815-6822.
    [30] Dahunsi S O,Oranusi S,Owolabi J B,et al. Synergy of Siam weed(Chromolaena odorata)and poultry manure for energy generation:effects of pretreatment methods, modeling and process optimization[J]. Bioresource Technology,2017,225:409-417.
    [31] Xiao B Y,Qin Y,Zhang W Z,et al. Temperature-phased anaerobic digestion of food waste:a comparison with single-stage digestions based on performance and energy balance[J].Bioresource Technology,2018,249:826-834.
    [32] Ge H Q,Jensen P D,Batstone D J. Pre-treatment mechanisms during thermophilic-mesophilic temperature phased anaerobic digestion of primary sludge[J]. Water Research,2010,44(1):123-130.
    [33]马小云,万金泉.苯酚对厌氧颗粒污泥的毒性研究[J].环境科学,2011,32(5):1402-1406.Ma X Y,Wan J Q. Study on toxicity of phenol to anaerobic granular sludge[J]. Environmental Science,2011,32(5):1402-1406.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700