用户名: 密码: 验证码:
基于SWAT模型的涪江流域下垫面对面源污染负荷的影响分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characterization of the Impacts of Underlying Surface Conditions of the Fujiang River Basin on the Non-Point Source Pollution Loads Using the SWAT Model
  • 作者:柳强 ; 王康 ; 罗彬 ; 陈鹏 ; 杨渊 ; 陈玲玲
  • 英文作者:LIU Qiang;WANG Kang;LUO Bin;CHEN Peng;YANG Yuan;CHEN Ling-ling;Sichuan Environmental Monitoring Center;State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan University;Institute of Geological Engineering Investigation of Sichuan Province;Neijiang Environmental Monitoring Center;
  • 关键词:涪江流域 ; 面源污染 ; 下垫面 ; 径流 ; Sobol敏感性指数
  • 英文关键词:Fujiang River Basin;;non-point source pollution;;underlying surface;;runoff;;Sobol sensitivity index
  • 中文刊名:生态与农村环境学报
  • 英文刊名:Journal of Ecology and Rural Environment
  • 机构:四川省生态环境监测总站;武汉大学水资源与水电工程科学国家重点实验室;四川省地质工程勘察院;内江市环境监测中心站;
  • 出版日期:2019-06-25
  • 出版单位:生态与农村环境学报
  • 年:2019
  • 期:06
  • 基金:国家自然科学基金(91647109,51679257)
  • 语种:中文;
  • 页:44-51
  • 页数:8
  • CN:32-1766/X
  • ISSN:1673-4831
  • 分类号:X522
摘要
为探讨流域下垫面污染物排放量、径流条件和本底条件对氨氮(NH_3)、总磷(TP)和高锰酸盐指数(I_(Mn))3种面源负荷的影响机制,以涪江流域为对象,构建了分布式水文和面源污染负荷模拟SWAT模型,并采用SWAT-Cup进行了参数率定,在此基础上采用Sobol方法进行了全局性敏感性分析。采用Nash-Sutcliffe系数、相对均方根误差、相对偏差和相对总误差4个指标进行检验,结果表明模拟径流过程和污染负荷与实测值基本相符。各种下垫面条件下,NH_3、TP和I_(Mn)负荷变化幅度均随着负荷均值的增加而增大,当下垫面为山丘区或自然林草为主的汇流区时,径流条件因子中的坡度和坡长对于面源污染负荷的影响最大。由于农田对径流过程具有显著的调节能力,面源污染负荷随汇流区内农田面积比例增加而降低。土壤本底、面源污染物排放量和径流条件3类因子中,径流条件因子对于面源污染负荷的影响最为敏感,而面源污染物排放量的影响不显著。下垫面对TP负荷的敏感性最弱,对IMn负荷的敏感性最强。因此,加强径流过程调控能力对涪江流域面源污染控制最为有效。
        The objective of this study is to investigate the impacts of underlying surface conditions,i. e.,discharged sewage from various sources,runoff paths,and soil background TN and TP contents on the ammonia nitrogen(NH_3),total phosphorus(TP)and permanganate index(I_(Mn))loads. The hydrology and transport and transformation processes of the non-point source pollutions at the Fujiang River Basin were simulated with a SWAT model in which the parameters were calibrated by the SWAT-Cup. The global sensitivities of underlying surface condition parameters were evaluated using the Sobol indexes. The Nash-Sutcliffe coefficient,the relative root mean square error,the relative deviation,and the relative total error were used to evaluate the model performance and the results show that the simulated flow rates and NPS loads were accurate. The variation of the NPS pollution loads increased as more pollution discharged into rivers under various underlying surface conditions. The NPS loads were mainly affected by the landscape and the slope length in hills dominated by the natural forests,whereas the NPS loads decreased with the proportion of agricultural land area due to the modulation capacity of the agricultural lands to the runoff. The Sobol sensitivity analysis results demonstrate that flow paths had the most important first-order and total-order effect on the simulated flow and NPS loads. The sensitivity indices of the total phosphorus and the permanganate index were the lowest and the highest,respectively,among three NPS pollutions.Strengthening the control and adjustment ability of the runoff process has the most significant effect on the controlling of non-point source pollution in the Fujiang River Basin.
引文
[1] TRAN N H,GIN K Y H,NGO H H. Fecal Pollution Source Tracking Toolbox for Identification,Evaluation and Characterization of Fecal Contamination in Receiving Urban Surface Waters and Groundwater[J]. Science of the Total Environment,2015,538:38-57.
    [2] OUYANG W,HUANG H B,HAO F H,et al. Evaluating Spatial Interaction of Soil Property With Non-Point Source Pollution at Watershed Scale:The Phosphorus Indicator in Northeast China[J]. Science of the Total Environment,2012,432:412-421.
    [3] SMALDINO P E. Measures of Individual Uncertainty for Ecological Models:Variance and Entropy[J]. Ecological Modelling,2013,254:50-53.
    [4] WHELAN G,KIM K,PELTON M A,et al. An Integrated Environmental Modeling Framework for Performing Quantitative Microbial Risk Assessments[J]. Environmental Modelling&Software,2014,55:77-91.
    [5] ONGLEY E D,ZHANG X,YU T. Current Status of Agricultural and Rural Non-Point Source Pollution Assessment in China[J].Environment Pollution,2010,158(5):1159-1168.
    [6] CHEN L,GONG Y W,SHEN Z Y. Structural Uncertainty in Watershed Phosphorus Modeling:Toward a Stochastic Framework[J]. Journal of Hydrology,2016,537:36-44.
    [7] GIUSTARINI L,PARISOT O,GHONIEM M,et al. A User-Driven Case-Based Reasoning Tool for Infilling Missing Values in Daily Mean River Flow Records[J]. Environmental Modelling&Software,2016,82:308-320.
    [8] TUSET J,VERICAT D,BATALLA R J. Rainfall,Runoff and Sediment Transport in a Mediterranean Mountainous Catchment[J].Science of the Total Environment,2016,540:114-132.
    [9] NEITSCH S L,ARNOLD J G,KINIRY J R,et al. Soil and Water Assessment Tool,Theoretical Documentation,Version 2005[Z].[s. l.]:Blackland Research Center,2005.
    [10] ARNOLD J G,MORIASI D N,GASSMAN P W,et al. SWAT:Model Use,Calibration,and Validation[J]. Transactions of the ASABE,2012,55(4):1491-1508.
    [11]涂宏志,侯鹰,陈卫平.基于AnnAGNPS模型的苇子沟流域非点源污染模拟研究[J].农业环境科学学报,2017,36(7):1345-1352.[TU Hong-zhi,HOU Ying,CHEN Wei-ping. Simulation of Non-Point Source Pollution in Weizigou Watershed With AnnAGNPS Model[J]. Journal of Agro-Environment Science,2017,36(7):1345-1352.]
    [12] OGDEN F L,JULIEN P Y. CASC2D:A Two-Dimensional,Physically Based,Hortonian Hydrologic Model:Chapter 4 in Mathematical Models of Small Watershed Hydrology and Applications[Z].[s. l.]:Water Resources Publications,2002:69-112.
    [13] BORAH D K,BERA M. Watershed-Scale Hydrologic and Nonpoint-Source Pollution Models:Review of Mathematical Bases[J]. Transactions of the ASABE,2003,46(6):1553-1566.
    [14]赵慧明,曹文洪,张岳峰,等.基于DWSM的流域水沙模拟计算系统的构建与应用[J].泥沙研究,2017,42(5):7-12.[ZHAO Hui-ming,CAO Wen-hong,ZHANG Yue-feng,et al.Computational System of Water and Sediment Simulation Based on DWSM[J]. Journal of Sediment Research,2017,42(5):7-12.]
    [15]齐伟,张弛,初京刚,等. Sobol'方法分析TOPMODEL水文模型参数敏感性[J].水文,2014,34(4):49-54.[QI Wei,ZHANG Chi,CHU Jing-gang,et al. Sensitivity Analysis of TOPMODEL Hydrological Model Parameters Based on Sobol′Method[J].Journal of China Hydrology,2014,34(4):49-54.]
    [16] DUSAN M,KRISTINA B,SOFIJA F,et al. Improvement of in-Si-tu Gamma Spectrometry Methods by Monte-Carlo Simulations[J].Journal of Environmental Radioactivity,2018,188:23-29.
    [17] ANTONIO P,MONIA C,NICOLA S. Variability of Local Stress States Resulting From the Application of Monte Carlo and Finite Difference Methods to the Stability Study of a Selected Slope[J].Engineering Geology,2018,245:370-389.
    [18] NASH J E,SUTCLIFFE J V. River Flow Forecasting Through Conceptual Models,PartⅠ:A Discussion of Principles[J]. Journal of Hydrology,1970,10(3):282-290.
    [19]陈会,王康,周祖昊.基于排水过程分析的水稻灌区农田面源污染模拟[J].农业工程学报,2012,28(6):112-119.[CHEN Hui,WANG Kang,ZHOU Zu-hao. Simulation of Agricultural Non-Point Source Pollution From Paddy Rice Irrigation District Based on Analyses of Drainage Processes[J]. Transactions of the CSAE,2012,28(6):112-119.]
    [20] ZADEH F K,NOSSENT J,SARRAZIN F,et al. Comparison of Variance-Based and Moment-Independent Global Sensitivity Analysis Approaches by Application to the SWAT Model[J]. Environmental Modelling&Software,2017,91:210-222.
    [21]韩宁,陈维梁,高扬,等.基于SWAT与DNDC模型对比研究亚热带流域氮淋溶与输出过程[J].环境科学,2017,38(6):2317-2325.[HAN Ning,CHEN Wei-liang,GAO Yang,et al.Comparative Study of SWAT and DNDC Applied to N Leach and Export From Subtropical Watershed[J]. Environmental Science,2017,38(6):2317-2325.]
    [22]孙瑞,张雪芹.基于SWAT模型的流域径流模拟研究进展[J].水文,2010,30(3):28-32,47.[SUN Rui,ZHANG Xui-Qin.Progress in Application of Watershed Runoff Simulation Based on SWAT[J]. Journal of China Hydrology,2010,30(3):28-32,47.]
    [23]李玉庆,张存,张文贤,等.西藏高原灌区氮素迁移转化特性及模拟方法[J].水科学进展,2017,28(5):745-755.[LI Yu-qing,ZHANG Cun,ZHANG Wen-xian,et al. Simulation of Nitrogen Transport and Transformation Processes in a Tibetan Plateau Irrigation District[J]. Advance in Water Science,2017,28(5):745-755.]
    [24] TANG Y,REED P,VAN WERKHOVEN K,et al. Advancing the Identification and Evaluation of Distributed Rainfall-Runoff Models Using Global Sensitivity Analysis[J]. Water Resources Research,2007,43(6):W06415. DOI:10. 1029/2006WR005813.
    [25]王康,冉宁,张仁铎,等.流域面源污染负荷差异性及不确定性的尺度特性分析[J].农业工程学报,2017,33(11):211-218.[WANG Kang,RAN Ning,ZHANG Ren-duo,et al. Analysis on Characterization of Heterogeneities and Uncertainty for Non-Point Source Pollution Loads at Different Basin Scales[J].Transactions of the CSAE,2017,33(11):211-218.]
    [26] DUPAS R,DELMAS M,DORIOZ J M,et al. Assessing the Impact of Agricultural Pressures on N and P Loads and Eutrophication Risk[J]. Ecological Indicators,2015,48:396-407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700