用户名: 密码: 验证码:
颗粒气泡黏附科学——宏观尺度下颗粒气泡黏附研究进展及困境
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bubble-particle attachment science: Advances and dilemma in bubble-particle attachment on a macroscopic scale
  • 作者:邢耀文 ; 桂夏辉 ; 曹亦俊 ; 刘炯天
  • 英文作者:XING Yaowen;GUI Xiahui;CAO Yijun;LIU Jiongtian;Chinese National Engineering Research Center of Coal Preparation and Purification,China University of Mining and Technology;Henan Province Industrial Technology Research Institute of Resources and Materials,Zhengzhou University;
  • 关键词:浮选 ; 颗粒-气泡 ; 黏附 ; 诱导时间
  • 英文关键词:flotation;;bubble-particle;;attachment;;induction time
  • 中文刊名:煤炭学报
  • 英文刊名:Journal of China Coal Society
  • 机构:中国矿业大学国家煤加工与洁净化工程技术研究中心;郑州大学河南资源与材料产业河南省协同创新中心;
  • 出版日期:2019-02-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:02
  • 基金:中国博士后科学基金资助项目(2018M642369);; 国家重点研发计划资助项目(2018YFC0604702);; 国家自然科学基金资助项目(51774286)
  • 语种:中文;
  • 页:238-243
  • 页数:6
  • CN:11-2190/TD
  • ISSN:0253-9993
  • 分类号:TD923
摘要
颗粒气泡黏附指从颗粒与气泡相遇开始到液膜发生薄化破裂最后至三相润湿周边铺展形成稳定矿化气絮体的过程,是浮选中的核心作用单元。然而浮选颗粒气泡黏附机理至今仍不明确。黏附过程主要受颗粒气泡的表面物理化学性质及溶液化学条件影响,表面力及流体作用力协同支配微纳尺度下颗粒气泡间液膜薄化破裂行为。排液过程中气液界面的变形效应进一步增加了系统复杂性,上述因素使得颗粒气泡黏附的理论研究及试验探索步履维艰。早期关于颗粒气泡黏附的研究主要聚焦于黏附概率,其中宏观尺度下的诱导时间测试占据主导地位,通过诱导时间结果计算黏附概率。对国内外宏观尺度下颗粒气泡黏附概率模型及研究技术手段进展展开全面综述,并对现有技术瓶颈及局限进行分析。诱导时间测量仪及高速动态摄影技术大大促进了浮选工作者对颗粒气泡黏附的理解,"诱导时间与实际浮选回收率具有着良好的相关关系"也已经被广泛证明。然而因微纳尺度下的表面力及液膜薄化动力学信息的缺失导致宏观诱导时间并不能从基础层面揭示颗粒气泡的黏附机理,微纳尺度下颗粒气泡间相互作用力及液膜薄化动力学的定量测试表征是技术发展的必然趋势,其可为浮选微观矿化反应过程提供新的理论视角,同时也为难浮煤及难选矿浮选过程强化提供理论支撑。
        Bubble-particle attachment is defined as the processes of film thinning and rupture from bubble-particle encounter,three phased contact line spreading and the formation of a stable mineralized gas floc,which is the key process in flotation.However,the underlying mechanism for bubble-particle attachment is not well understood. The attachment process is mainly influenced by the physical and chemical properties of particle and bubble,and the chemical conditions of the solution.The thinning rupture behavior of the thin liquid film between bubble and particle is controlled by the synergistic effect between surface force and hydrodynamic force.The deformation of gas-liquid interface further increases the complexity of the system,making the theoretical research and experimental exploration on bubble-particle attachment challenging.Early researches on attachment have been mainly focused on attachment probability.The induction time test on a macroscopic scale is the dominant and the attachment probability can be calculated based on induction time result.A comprehensive review on the current bubble-particle attachment probability models and the existing technical bottlenecks was carried out. The existing technical bottlenecks and limitations were also analyzed. Experimental techniques such as the induction timer and high speed visualization have significantly contributed to a better understanding of bubble-particle attachment.It has been demonstrated that the induction time correlates well with flotation recovery.However,surface forces and film drainage information between bubble and particle could not be identified,leading to the fundamental adhesion mechanism could not be revealed by macroscopic induction time.It is an inevitable trend of the development of technology to measure the interaction force between bubble and particle and the thinning dynamics of the thin liquid film on a nanometer scale.It can shed new light on flotation micro-mineralization process,and also provide a theoretical support for the flotation intensification of difficult-to-float coal and refractory ore.
引文
[1] XING Y W,GUI X H,PAN L,et al.Recent experimental advances for understanding bubble-particle attachment in flotation[J]. Advances in Colloid and Interface Science,2017,246:105-132.
    [2] NGUYEN A V,SCHULZE H J. Colloidal science of flotation[M].New York,America:Marcel Dekker Inc.,2004.
    [3] HEWITT D,FORNASIERO D,RALSTON J.Bubble particle attachment efficiency[J].Minerals Engineering,1994,7(5-6):657-665.
    [4] RALSTON J,DUKHIN S S,MISHCHUK N A.Wetting film stability and flotation kinetics[J].Advances in Colloid and Interface Science,2002,95(2-3):145-236.
    [5] YOON R H.The role of hydrodynamic and surface forces in bubbleparticle interaction[J]. International Journal of Mineral Processing,2000,58(1-4):129-143.
    [6] SUTHERLAND K.Physical chemistry of flotation.XI.Kinetics of the flotation process[J]. The Journal of Physical Chemistry,1948,52(2):394-425.
    [7] YOON R H,LUTTRELL G.The effect of bubble size on fine particle flotation[J]. Mineral Procesing and Extractive Metallurgy Review,1989,5(1-4):101-122.
    [8] DOBBY G,FINCH J.Particle size dependence in flotation derived from a fundamental model of the capture process[J]. International Journal of Mineral Processing,1987,21(3-4):241-260.
    [9] SVEN-NILSSON I. Effect of contact time between mineral and air bubbles on flotation[J].Kolloid-Z,1934,69(2):230-232.
    [10] EIGELES M,VOLOVA M.Kinetic investigation of effect of contact time,temperature and surface condition on the adhesion of bubbles to mineral surfaces[C].Proceedings,1960:271.
    [11] YE Y,KHANDRIKA S M,MILLER J D.Induction-time measurements at a particle bed[J]. International Journal of Mineral Processing,1989,25:221-240.
    [12] YE Y,MILLER J D. Bubble/Particle contact time in the analysis of coal flotation[J].Coal Preparation,1988,5(3-4):147-166.
    [13] GU G X,XU Z,NANDAKUMAR K,et al.Effects of physical environment on induction time of air-bitumen attachment[J]. International Journal of Mineral Processing,2003,69(1):235-250.
    [14] XING Y W,GUI X H,CAO Y.Effect of bubble size on bubble-particle attachment and film drainage kinetics-A theoretical study[J].Powder Technology,2017,322:140-146.
    [15] YOON R H,YORDAN J L. Induction time measurements for the quartz-amine flotation system[J]. Journal of Colloid and lnterface Science,1991,141(2):374-383.
    [16] XU M,XING Y,CAO Y,et al.Effect of dodecane and oleic acid on the attachment between oxidized coal and bubbles[J].Minerals,2018,8(2):29.
    [17] CHEN S,YANG Z,CHEN L,et al.Wetting thermodynamics of low rank coal and attachment in flotation[J]. Fuel,2017,207:214-225.
    [18] ALBIJANIC B,AMINI E,WIGHTMAN E,et al.A relationship between the bubble-particle attachment time and the mineralogy of a copper-sulphide ore[J]. Minerals Engineering,2011,24(12):1335-1339.
    [19] ALBIJANIC B,SUBASINGHE G K N,BRADSHAW D J,et al.Influence of liberation on bubble-particle attachment time in flotation[J].Minerals Engineering,2015,74:156-162.
    [20] ALBIJANIC B,BRADSHAW D J,NGUYEN A V.The relationships between the bubble-particle attachment time,collector dosage and the mineralogy of a copper sulfide ore[J]. Minerals Engineering,2012,36-38:309-313.
    [21] VERRELLI D I,BRUCKARD W J,KOH P T L,et al. Particle shape effects in flotation. Part 1:Microscale experimental observations[J].Minerals Engineering,2014,58(4):80-89.
    [22] VERRELLI D I,KOH P T L,NGUYEN A V.Particle-bubble interaction and attachment in flotation[J]. Chemical Engineering Science,2011,66(23):5910-5921.
    [23] GU G,SANDERS R S,NANDAKUMAR K,et al.A novel experimental technique to study single bubble-bitumen attachment in flotation[J].International Journal of Mineral Processing,2004,74(1-4):15-29.
    [24] ZAWALA J,KOSIOR D.Dynamics of dewetting and bubble attachment to rough hydrophobic surfaces-measurements and modelling[J].Minerals Engineering,2016,85:112-122.
    [25] KRASOWSKA M,MALYSA K.Kinetics of bubble collision and attachment to hydrophobic solids:I. Effect of surface roughness[J].International Journal of Mineral Processing,2007,81(4):205-216.
    [26] NAJAFI A S,XU Z,MASLIYAH J.Measurement of sliding velocity and induction time of a single micro-bubble under an inclined collector surface[J]. The Canadian Journal of Chemical Engineering,2008,86(6):1001-1010.
    [27] KRASOWSKA M,ZAWALA J,MALYSA K.Air at hydrophobic surfaces and kinetics of three phase contact formation[J].Advances in Colloid and Interface Science,2009,147-148:155-169.
    [28] KRASOWSKA M,MALYSA K. Wetting films in attachment of the colliding bubble[J]. Advances in Colloid and Interface Science,2007,134-135:138-150.
    [29] KRASOWSKA M,KOLASINSKA M,WARSZYNSKI P,et al.Influence of polyelectrolyte layers deposited on mica surface on wetting film stability and bubble attachment[J].Journal of Physical Chemistry C,2007,111(15):5743-5749.
    [30] KOSIORD,ZAWALA J,KRASOWSKA M,et al.Influence of noctanol and alpha-terpineol on thin film stability and bubble attachment to hydrophobic surface[J].Physical Chemistry Chemical Physics,2013,15(7):2586-2595.
    [31] MALYSA K,KRASOWSKA M,KRZAN M.Influence of surface active substances on bubble motion and collision with various interfaces[J]. Advances in Colloid and Interface Science,2005,114:205-225.
    [32] HASSAS B V,CALISKAN H,GUVEN O,et al.Effect of roughness and shape factor on flotation characteristics of glass beads[J].Colloids and Surfaces A-Physicochemical and Engineering Aspects,2016,492:88-99.
    [33] LECRIVAIN G,PETRUCCI G,RUDOLPH M,et al.Attachment of solid elongated particles on the surface of a stationary gas bubble[J].International Journal of Multiphase Flow,2015,71:83-93.
    [34]李国胜,韩加展,邓丽君,等.气泡在煤炭表面的碰撞和黏附过程[J].煤炭学报,2016,41(11):2841-2846.LI Guosheng,HAN Jiazhan,DENG Lijun,et al.Collision and adhesion process of air bubbles on coal surface[J]. Journal of China Coal Society,2016,41(11):2841-2846.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700