用户名: 密码: 验证码:
不同利用方式红壤磷素有效性的深度变化——以江西省余江县孙家小流域为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Changes in Phosphorus Availability with Soil Depths under Different Land Use Types in the Sunjia Small Watershed, Yujiang County of Jiangxi Province
  • 作者:姚怡 ; 王艳玲 ; 高振 ; 刘真勇
  • 英文作者:YAO Yi;WANG Yan-ling;GAO Zhen;LIU Zhen-yong;International Center for Ecology, Meteorology and Environment, College of Applied Meteorology, Nanjing University of Information Sciences and Technology;
  • 关键词:红壤 ; 利用方式 ; 磷分组 ; 磷有效性 ; 小流域
  • 英文关键词:Red Soil;;Land use;;Soil profile;;Phosphorus fractionation;;Soil phosphorus availability;;Small watershed
  • 中文刊名:土壤通报
  • 英文刊名:Chinese Journal of Soil Science
  • 机构:南京信息工程大学应用气象学院生态气象环境研究中心;
  • 出版日期:2019-04-06
  • 出版单位:土壤通报
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金项目(41571286,41571130053)资助
  • 语种:中文;
  • 页:119-127
  • 页数:9
  • CN:21-1172/S
  • ISSN:0564-3945
  • 分类号:S153.6
摘要
在江西省鹰潭市余江县孙家红壤小流域的典型红壤区随机选取了具有代表性的林地(F)、花生旱地(PU)、新稻田(NP,<30 a)和老稻田(OP,> 200 a),在0~40 cm深度每隔5 cm采集分层土样,分析了土壤全磷(TP)、有效磷(Bray P)、磷素活化系数(PAC)及有机磷(Po)、无机磷(Pi)与各组分磷的深度变化,探讨了土壤pH与土壤有机质(SOM)对红壤磷素有效性的影响。研究结果表明:孙家小流域不同利用方式红壤TP含量大小依次为:老稻田>新稻田>林地>花生旱地;除林地外,花生旱地与稻田土壤TP、Bray P、Pi和Po含量随着土壤深度的增加呈显著降低趋势,且稻田土壤Po含量及其占全磷的比例显著高于林地和花生旱地。花生旱地与稻田0~20 cm土壤中极有效磷(EAP)、中等有效磷(MAP)及EAP、MAP中的无机磷与有机磷的比值均显著高于林地土壤。林地转为旱地和稻田,尤其是长期植稻可以促进土壤非有效磷(NAP)向利于作物吸收的EAP与MAP转化,因而提高土壤磷素有效性。相关分析表明,随着SOM累积量的增加,四种利用方式红壤中EAP、MAP含量均显著提高。
        Soil samples were collected from the 0-40 cm depth of red soils under the land use types of forest, peanut upland, new paddy field(< 30 yr.) and old paddy field( > 200 yr.) at the Sunjia Watershed, Jiangxi Province of China.The vertical variation of soil total phosphorus(TP), available P(Bray P), P activation coefficient(PAC), organic P(Po),inorganic P(Pi) and various fractions of soil P were analyzed, and the relationships between soil pH, soil organic matter(SOM) and soil P availability were also discussed. Results showed that soil TP content in the red soil under different land use types was in the order of old paddy field > new paddy field > forest > peanut upland. Soil TP, Bray P, Pi and Po significantly decreased with the soil depths, except in the forest soil. The Po content and its proportion in TP in the paddy field were all significantly higher than those in the forest soil and peanut upland soil. In the surface soil(0-20 cm) of peanut upland and paddy field, the contents of easily-available P(EAP), moderately-available P(MAP) and the ratios of EAPi/EAPo and MAPi/MAPo were all significantly higher compared with the forest soil.The change in land use types from forest to the peanut upland and paddy, especially the long-term cultivated paddy system, significantly promoted the transformation of non-available P(NAP) to EAP and MAP in the soil, and then the availability of soil P was increased. Correlation analysis showed that the contents of EAP and MAP in the forest,peanut upland and paddy soils increased significantly with the increase of SOM content.
引文
[1]黄文娟.南亚热带森林生态系统磷循环及其对全球变化的响应[D].北京:中国科学院大学, 2013.
    [2]宋国栋,刘素美.黄东海表层沉积物中磷的赋存形态和分布特征及其对生态系统的潜在影响[J].海洋学报:中文版, 2015, 34(4):84.
    [3]林成芳,彭建勤,洪慧滨,等.氮、磷养分有效性对森林凋落物分解的影响研究进展[J].生态学报, 2017, 37(1):54-62.
    [4]汪洪,宋书会,张金尧,等.土壤磷形态组分分级及31P-NMR技术应用研究进展[J].植物营养与肥料学报, 2017, 23(2):512–523.
    [5] CHANG S C, JACKSON M L. Fractionation of Soil-P[J]. Soil Science,1957, 84(2):133-144.
    [6]顾益初,蒋柏藩.石灰性土壤无机磷分级的测定方法[J].土壤, 1990, 22(2):101-102.
    [7] HEDLEY MJ, STEWART J W B, CHAUHAN B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations[J]. Journal of the Soil Science Society of America, 1982, 46(5):970-976.
    [8] NEGASSA W, LEINWEBER P. How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus:A review[J]. Journal of Plant Nutrition and Soil Science, 2010, 172(3):305-325.
    [9]张鑫,谷会岩,陈祥伟.择伐干扰对小兴安岭阔叶红松林土壤磷形态及有效性的影响[J].应用生态学报, 2018, 29(2):441-448.
    [10]陈超,杨丰,赵丽丽,等.贵州省不同土地利用方式对土壤理化性质及其有效性的影响[J].草地学报, 2014, 22(5):1007-1013.
    [11] WANG Y, TANG J, ZHANG H, et al. Phosphorus availability and sorption as affected by long-term fertilization[J]. Agronomy Journal,2014, 106(5):1583.
    [12]鲁艳红,廖育林,聂军,等.我国南方红壤酸化问题及改良修复技术研究进展[J].湖南农业科学, 2015(3):148-151.
    [13]王经纬,王艳玲,姚怡,等.长期施肥对旱地红壤团聚体磷素固持与释放能力的影响[J].土壤学报, 2017, 54(5):1240-1250.
    [14]赵其国,黄国勤,马艳芹.中国南方红壤生态系统面临的问题及对策[J].生态学报, 2013, 33(24):7615-7622.
    [15] CHEN C R, CONDRON L M, DAVIS M R, et al. Effects of afforestation on phosphorus dynamics and biological properties in a New Zealand grassland soil[J]. Plant&Soil, 2000, 220(1/2):151-163.
    [16] TIESSEN H, STEWART J W B, COLE C V. Pathways of phosphorus transformations in soils of differing pedogenesis1[J]. Soil Science Society of America Journal, 1984, 48(4):853-858.
    [17]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [18]张英鹏,陈清,李彦,等.不同磷水平对山东褐土耕层无机磷形态及磷有效性的影响[J].中国农学通报, 2008, 24(7):245-248.
    [19]黄庆海,赖涛,吴强,等.长期施肥对红壤性水稻土有机磷组分的影响[J].植物营养与肥料学报, 2003, 9(1):63-66.
    [20]林诚,王飞,何春梅,等.长期不同施肥对南方黄泥田磷库及其形态的影响[J].植物营养与肥料学报, 2014, 20(3):541-549.
    [21]吴曦.植物高效利用土壤磷素的机理研究[J].产业与科技论坛,2017, 16(9):47-48.
    [22] MCDOWELL R W, STEWART I. The phosphorus composition of contrasting soils in pastoral, native and forest management in Otago,New Zealand:Sequential extraction and 31P NMR[J]. Geoderma,2006, 130(1):176-189.
    [23]陈冲,贾重建,卢瑛,等.珠江三角洲平原土壤磷剖面分布及形态特征研究[J].土壤通报, 2015, 46(5):1025-1033.
    [24] MOGES A, DAGNACHEW M, YIMER F. Land use effects on soil quality indicators:a case study of Abo-Wonsho Southern Ethiopia[J].Applied&Environmental Soil Science, 2013, 2013(1A):9.
    [25]何园球,樊剑波,李成亮,等.水稻旱作下土壤水分状况和施用磷肥对红壤有效磷含量的影响[J].土壤学报, 2011, 48(6):1196-1202.
    [26]郭杏妹,吴宏海,罗媚,等.红壤酸化过程中铁铝氧化物矿物形态变化及其环境意义[J].岩石矿物学杂志, 2007, 26(6):515-521.
    [27] SOLOMON D, LEHMANN J. Loss of phosphorus from soil in semi-arid northern Tanzania as a result of cropping:evidence from sequential extraction and 31P-NMR spectroscopy[J]. European Journal of Soil Science, 2010, 51(4):699-708.
    [28] SHIELS A B, SANFORD R L J. Soil nutrient differences between two krummholz-form tree species and adjacent alpine tundra[J].Geoderma, 2001, 102(3):205-217.
    [29]史静,张誉方,张乃明,等.长期施磷对山原红壤磷库组成及有效性的影响[J].土壤学报, 2014(2):351-359.
    [30] LIEBISCH F, KELLER F, FROSSARD E, et al. Temporal dynamics of available and microbial phosphorus and organic phosphorus mineralization in a grassland soil[C]. EGU General Assembly.2010:5339.
    [31] VINCENT A G, TURNER B L, EVJ T. Soil organic phosphorus dynamics following perturbation of litter cycling in a tropical moist forest[J]. European Journal of Soil Science, 2010, 61(1):48-57.
    [32] MAKINO W, COTNER J B. Elemental stoichiometry of a heterotrop hic bacterial community in a freshwater lake:implications for growtha nd resource-dependent variations[J]. Aquatic Microbial Ecology,2004, 34(1):33-41.
    [33]王绍强,于贵瑞.生态系统碳氮磷元素的生态化学计量学特征[J].生态学报, 2008, 28(8):3937-3947.
    [34]王建林,钟志明,王忠红,等.青藏高原高寒草原生态系统土壤碳磷比的分布特征[J].草业学报, 2014, 23(22):9-11.
    [35] CLEVELAND C C, LIPTZIN D. C:N:P stoichiometry in soil:is there a"Redfield ratio"for the microbial biomass[J]. Biogeochemistry,2007, 85(3):235-252.
    [36]陶士锋,徐晓峰,寇太记.土壤有机质对有效磷及水提取磷含量的影响[J].中国生态农业学报, 2012, 20(8):1054-1058.
    [37]张海东,于东升,王宁,等.植被恢复过程中侵蚀红壤有机质变化研究[J].土壤, 2013, 45(5):856–861.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700