用户名: 密码: 验证码:
以三聚氰胺海绵体制备可用于高性能超级电容器电极的碳材料研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Carbon Materials from Melamine Sponges for High Performance Supercapacitor Electrodes:A Review
  • 作者:石炎颖 ; 刘桂静 ; 金仁成 ; 徐慧 ; 高善民
  • 英文作者:SHI Yanying;LIU Guijing;JIN Rencheng;XU Hui;GAO Shanmin;School of Chemistry and Materials Science,Ludong University;
  • 关键词:三聚氰胺海绵 ; 活化 ; 掺杂 ; 复合 ; 电极材料
  • 英文关键词:melamine foam;;activation;;doping;;composites;;Electrode materials
  • 中文刊名:鲁东大学学报(自然科学版)
  • 英文刊名:Journal of Ludong University(Natural Science Edition)
  • 机构:鲁东大学化学与材料科学学院;
  • 出版日期:2019-07-28
  • 出版单位:鲁东大学学报(自然科学版)
  • 年:2019
  • 期:03
  • 基金:山东省自然科学基金面上项目(ZR2019MB019,ZR2018MEM020)
  • 语种:中文;
  • 页:41-52
  • 页数:12
  • CN:37-1453/N
  • ISSN:1673-8020
  • 分类号:TM53;TB33
摘要
超级电容器具有比容量大、充放电速度快、循环寿命长等优点,其中最常用的碳基电极材料决定着电容器的主要性能,是改进和优化超级电容器性能的重要切入点.近年来,密度低、含氮量和孔隙率高的三聚氰胺海绵(MS)被用来设计和获得三维多孔碳电极材料.目前已有许多关于碳化MS和基于MS的复合材料的改性研究报道.本文对近年以MS为原料制作超级电容器电极材料的研究进行了综述,包括对MS的碳化、掺杂活化以及复合改性等方面,对多孔碳材料用于超级电容器电极的发展进行了展望.
        The supercapacitors,as a new type of energy storage device,have the advantages of large specific capacity,fast charge and discharge,long cycle life,etc.,which have attracted extensive attention in the field of energy storage.Among them,carbon-based electrode materials are the most commonly used in supercapacitors,determining the main performance parameters about the supercapacitors,and the improvement and optimization of electrochemical properties of the supercapacitor.Melamine sponge(MS),with low density,high nitrogen content,high porosity and excellent mechanical properties,is widely used as the main raw material for the design and production of three-dimensional porous electrode materials.MS is a satisfactory carbon material for supercapacitors because direct carbonization of MS can form n-doped porous carbon nanostructures.There have been many reports on the modification of MS,carbonized MS and MS-based composites so far.This paper reviews the activation,doping and composite modification of melamine.
引文
[1] LIU J,KANG R,YAN Z,et al.One-step synthesis of 3D-interconnected porous carbons derived from ephedra herb using calcium chloride and urea as co-activation for high-performance supercapacitors[J].Ionics,2019:1-8.
    [2] 雷文,赵晓梅,何平,刘洪涛.碳基超级电容器电极材料的研究进展[J].化学通报,2013,76(11):981-987.
    [3] LI N W,DU X,SHI J L,et al.Graphene@ hierarchical meso-/microporous carbon for ultrahigh energy density lithium-ion capacitors[J].Electrochimica Acta,2018,281:459-465.
    [4] 李雪芹,常琳,赵慎龙,郝昌龙,陆晨光,朱以华,唐智勇.基于碳材料的超级电容器电极材料的研究[J].物理化学学报,2017,33(1):130-148.
    [5] YANG W,HOU L,XU X,et al.Carbon nitride template-directed fabrication of nitrogen-rich porous graphene-like carbon for high performance supercapacitors[J].Carbon,2018,130:325-332.
    [6] TANG Z,PEI Z,WANG Z,et al.Highly anisotropic,multichannel wood carbon with optimized heteroatom doping for supercapacitor and oxygen reduction reaction[J].Carbon,2018,130:532-543.
    [7] 杨盛毅,文方.超级电容器综述[J].现代机械,2009,4:82-84.
    [8] XU J,TAN Z,ZENG W,et al.Supercapacitors:A Hierarchical Carbon Derived from Sponge-Templated Activation of Graphene Oxide for High-Performance Supercapacitor Electrodes (Adv.Mater.26/2016)[J].Advanced Materials,2016,28(26):5331-5331.
    [9] 张传喜,郑中华.超级电容器碳材料的研究现状与发展[J].2007,27(5):316-318.
    [10] FRACKOWIAK E.Carbon materials for supercapacitor application[J].Physical Chemistry Chemical Physics,2007,9(15):1774-1785.
    [11] 袁斌,周蕾,管道安.级电容器用碳基电极材料研究进展[J].船电技术,2016,36(1):33-36.
    [12] WEI W,CUI X,CHEN W,et al.Manganese oxide-based materials as electrochemical supercapacitor electrodes[J].Chemical Society Reviews,2011,40(3):1697-1721.
    [13] 田艳红,付旭涛,吴伯荣.超级电容器用多孔碳材料的研究进展[J].电源技术,2002,26(6):466-469.
    [14] 郭慰彬,陈嘉炼,刘金玲,等.超级电容器用碳基电极材料研究进展[J].电子元件与材料,2019,38(1):1-8.
    [15] 刘敏敏,蔡超,张志杰,等.纳米碳材料负载过渡金属氧化物用作超级电容器电极材料[J].材料导报,2019,33(1):103-109.
    [16] ZHANG Z,ZHANG Y,MU X,et al.The carbonization temperature effect on the electrochemical performance of nitrogen-doped carbon monoliths[J].Electrochimica Acta,2017,242:100-106.
    [17] XIAO K,DING L X,LIU G,et al.Freestanding,Hydrophilic Nitrogen-Doped Carbon Foams for Highly Compressible All Solid-State Supercapacitors[J].Advanced Materials,2016,28(28):5997-6002.
    [18] CHEN S,HE G,HU H,et al.Elastic carbon foam via direct carbonization of polymer foam for flexible electrodes and organic chemical absorption[J].Energy & Environmental Science,2013,6(8):2435-2439.
    [19] ZHANG R,JING X,CHU Y,et al.Nitrogen/oxygen co-doped monolithic carbon electrodes derived from melamine foam for high-performance supercapacitors[J].Journal of Materials Chemistry A,2018,6(36):17730-17739.
    [20] ZHANG Y,LI Y,MU X,et al.Nanofoaming to boost electrochemical performance of three-dimensional compressible carbon monoliths for robustsupercapacitors[J].Electrochimica Acta,2019,297:504-510.
    [21] SONG L,ZOU Y,ZHANG H,et al.High performance supercapacitor based on polypyrrole/melamine formaldehyde resin derived carbon material[J].Int.J.Electrochem.Sci,2017,12:1014-1024.
    [22] YAO L,CHEN D M,YAN S,et al.A Facile Synthesis of Nitrogen-Doped Porous Carbon Materials for High-Performance Supercapacitors[J].Chemistry Select,2019,4(9):2726-2733.
    [23] XIANG X,LIU E,XIE H,et al.Highly stable performance of supercapacitors using microporous carbon derived from phenol–melamine–formaldehyde resin[J].Journal of Solid State Electrochemistry,2012,16(8):2661-2666.
    [24] HULICOVA D,KODAMA M,HATORI H.Electrochemical performance of nitrogen-enriched carbons in aqueous and non-aqueous supercapacitors[J].Chemistry of Materials,2006,18(9):2318-2326.
    [25] LI W,CHEN D,LI Z,et al.Nitrogen-containing carbon spheres with very large uniform mesopores:the superior electrode materials for EDLC in organic electrolyte[J].Carbon,2007,45(9):1757-1763.
    [26] DOI Y,TAKAI A,MAKINO S,et al.Synthesis of mesoporous carbon using a fullerenol-based precursor solution via nanocasting with SBA-15[J].Chemistry Letters,2010,39(7):777-779.
    [27] WICKRAMARATNE N P,XU J,WANG M,et al.Nitrogen enriched porous carbon spheres:attractive materials for supercapacitor electrodes and CO2 adsorption[J].Chemistry of Materials,2014,26(9):2820-2828.
    [28] WOHLGEMUTH S A,VILELA F,TITIRICI M M,et al.A one-pot hydrothermal synthesis of tunable dual heteroatom-doped carbon microspheres[J].Green Chemistry,2012,14(3):741-749.
    [29] YOU B,WANG L,YAO L,et al.Three dimensional N-doped graphene–CNT networks for supercapacitor[J].Chemical Communications,2013,49(44):5016-5018.
    [30] CHEN L,BAI H,HUANG Z,et al.Mechanism investigation and suppression of self-discharge in active electrolyte enhanced supercapacitors[J].Energy & Environmental Science,2014,7(5):1750-1759.
    [31] SHENG Z H,SHAO L,CHEN J J,et al.Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis[J].ACS Nano,2011,5(6):4350-4358.
    [32] YU X L,ZHAO J F,LV R T,et al.Facile synthesis of nitrogen-doped carbon nanosheets with hierarchical porosity for high performance supercapacitors and lithium–sulfur batteries[J].Journal of Materials Chemistry A,2015,3(36):18400-18405.
    [33] ZHANG J,CHEN G,ZHANG Q,et al.Self-assembly synthesis of N-doped carbon aerogels for supercapacitor and electrocatalytic oxygen reduction[J].ACS Applied Materials & Interfaces,2015,7(23):12760-12766.
    [34] HUANG X,XU D,YUAN S,et al.Dendritic Ni-P-Coated Melamine Foam for a Lightweight,Low-Cost,and Amphipathic Three-Dimensional Current Collector for Binder-Free Electrodes[J].Advanced Materials,2014,26(42):7264-7270.
    [35] PANJA T,BHATTACHARJYA D,YU J S.Nitrogen and phosphorus co-doped cubic ordered mesoporous carbon as a supercapacitor electrode material with extraordinary cyclic stability[J].Journal of Materials Chemistry A,2015,3(35):18001-18009.
    [36] ZHANG J,YANG Z,QIU J,et al.Design and synthesis of nitrogen and sulfur co-dopedporous carbon via two-dimensional interlayer confinement for a high-performance anode material for lithium-ion batteries[J].Journal of Materials Chemistry A,2016,4(16):5802-5809.
    [37] ZHAO H,WU J,LI J,et al.A flexible three-dimensional MoS2/carbon architecture derived from melamine foam as free-standing anode for high performance lithium-ion batteries[J].Applied Surface Science,2018,462:337-343.
    [38] XIANG M,WU H,LIU H,et al.A Flexible 3D Multifunctional MgO-Decorated Carbon Foam@ CNTs Hybrid as Self-Supported Cathode for High-Performance Lithium-Sulfur Batteries[J].Advanced Functional Materials,2017,27(37):1702573.
    [39] ZENG X,DING Z,MA C,et al.Hierarchical nanocomposite of hollow N-doped carbon spheres decorated with ultrathin WS2 nanosheets for high-performance lithium-ion battery anode[J].ACS Applied Materials & Interfaces,2016,8(29):18841-18848.
    [40] SHEN L,WANG J,XU G,et al.NiCo2S4 Nanosheets Grown on Nitrogen-Doped Carbon Foams as an Advanced Electrode for Supercapacitors[J].Advanced Energy Materials,2015,5(3):1400977.
    [41] HE S,CHEN W.High performance supercapacitors based on three-dimensional ultralight flexible manganese oxide nanosheets/carbon foam composites[J].Journal of Power Sources,2014,262:391-400.
    [42] LIU Y,ZHOU X,LIU R,et al.Preparation of three-dimensional compressible MnO2@ carbon nanotube sponges with enhanced supercapacitor performance[J].New Journal of Chemistry,2017,41(24):14906-14913.
    [43] WANG L,FU Y,CHEN Y,et al.Ultralight flower ball-like Co3O4/melamine-derived carbon foam as anode materials for lithium-ion batteries[J].Journal of Alloys and Compounds,2017,724:1117-1123.
    [44] ZHANG P,WANG R,HE M,et al.3D Hierarchical Co/CoO-Graphene-Carbonized Melamine Foam as aSuperior Cathode toward Long-Life Lithium Oxygen Batteries[J].Advanced Functional Materials,2016,26(9):1354-1364.
    [45] QIN T,WAN Z,WANG Z,et al.3D flexible O/N co-doped graphene foams for supercapacitor electrodes with high volumetric and areal capacitances[J].Journal of Power Sources,2016,336:455-464.
    [46] CHEN Y,XIAO Z,LIU Y,et al.A simple strategy toward hierarchically porous graphene/nitrogen-rich carbon foams for high-performance supercapacitors[J].Journal of Materials Chemistry A,2017,5(46):24178-24184.
    [47] ZHU G,XI C,LIU Y,et al.CN foam loaded with few-layer graphene nanosheets for high-performance supercapacitor electrodes[J].Journal of Materials Chemistry A,2015,3(14):7591-7599.
    [48] TJANDRA R,LIU W,LIM L,et al.Melamine based,n-doped carbon/reduced graphene oxide composite foam for Li-ion Hybrid Supercapacitors[J].Carbon,2018,129:152-158.
    [49] HONG X,LU Y,LI S,et al.Extremely low fractions of graphene oxide in carbon foam prepared by a spin-coating method as freestanding supercapacitor electrodes[J].Journal of Materials Science,2018,53(24):16476-16483.
    [50] JIANG D,LIANG H,LIU Y,et al.In situ generation of CoS 1.097 nanoparticles on S/N co-doped graphene/carbonized foam for mechanically tough and flexible all solid-state supercapacitors[J].Journal of Materials Chemistry A,2018,6(25):11966-11977.
    [51] LI M,XUE J.Integrated synthesis of nitrogen-doped mesoporous carbon from melamine resins with superior performance in supercapacitors[J].The Journal of Physical Chemistry C,2014,118(5):2507-2517.
    [52] JIANG D,LI C,YANG W,et al.Fabrication of an arbitrary-shaped and nitrogen-doped graphene aerogel for highly compressible all solid-state supercapacitors[J].Journal of Materials Chemistry A,2017,5(35):18684-18690.
    [53] CUI F,HUANG Y,XU L,et al.Rational construction of a 3D hierarchical NiCo2O4/PANI/MF composite foam as a high-performance electrode for asymmetric supercapacitors[J].Chemical Communications,2018,54(33):4160-4163.
    [54] QIN T,LIU B,WEN Y,et al.Freestanding flexible graphene foams@ polypyrrole@ MnO2 electrodes for high-performance supercapacitors[J].Journal of Materials Chemistry A,2016,4(23):9196-9203.
    [55] ZHAO Y,LIU J,HU Y,et al.Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes[J].Advanced Materials,2013,25(4):591-595.
    [56] LIU F,HAN G,CHANG Y,et al.Fabrication of carbon nanotubes/polypyrrole/carbon nanotubes/melamine foam for supercapacitor[J].Journal of Applied Polymer Science,2014,131(2):39779(1-7).
    [57] LI L,WANG K,HUANG Z,et al.Highly ordered graphene architectures by duplicating melamine sponges as a three-dimensional deformation-tolerant electrode[J].Nano Research,2016,9(10):2938-2949.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700