用户名: 密码: 验证码:
黄土丘陵区刺槐叶片-土壤-微生物碳氮磷化学计量学及其稳态性特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Carbon, nitrogen, and phosphorus stoichiometry and homeostasis characteristics of leaves, soil, and microbial biomass of Robinia pseudoacacia forests in the Loess Hilly Region of China
  • 作者:邓健 ; 张丹 ; 张伟 ; 任成杰 ; 郝雯晖 ; 刘冲 ; 韩新辉 ; 杨改河
  • 英文作者:DENG Jian;ZHANG Dan;ZHANG Wei;REN Chengjie;HAO Wenhui;LIU Chong;HAN Xinhui;YANG Gaihe;College of life sciences, Yan′an University;College of agronomy, Northwest Agriculture and Forestry University;
  • 关键词:微生物 ; 生态化学计量学 ; 内稳态 ; 植被恢复 ; 刺槐
  • 英文关键词:microorganism;;ecological chemometrics;;internal homeostasis;;vegetation restoration;;Robinia pseudoacacia
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:延安大学生命科学学院;西北农林科技大学农学院;
  • 出版日期:2019-05-16 16:42
  • 出版单位:生态学报
  • 年:2019
  • 期:15
  • 基金:陕西省自然科学基础研究计划项目(2018JQ3041);; 陕西省教育厅科研计划项目(18JK0871);; 延安大学大学生创新创业训练计划项目(D2017091)
  • 语种:中文;
  • 页:153-161
  • 页数:9
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:S718.5
摘要
明确植物和微生物在植被恢复过程中的内稳态特性,对反映生物随恢复环境变化的适应性和阐明生态系统养分循环规律有重要意义。以黄土丘陵区恢复5年、10年、20年、30年和45年的刺槐(Robinia pseudoacacia)人工林为研究对象,测定刺槐叶片、土壤和微生物生物量C、N、P含量及其化学计量学指标,重点揭示了叶片和微生物生物量养分在恢复过程中随土壤养分变化的稳态性特征。结果表明:(1)随着恢复年限的增加,土壤、叶片和微生物生物量C、N、P含量表现为增加趋势;(2)不同恢复年限叶片、土壤、微生物生物量C∶N分别为17.03—26.03、9.55—16.94、5.57—10.76、C∶P分别为465.04—634.48、19.89—65.81和39.64—110.53、N∶P分别为17.89—37.03、1.24—4.68和7.15—10.26,除叶片C∶N随恢复年限增加而降低外,其他指标均表现为随恢复年限增加而增加或先增加后降低;刺槐林生长后期可能面临P限制;(3)叶片和微生物生物量C、N、P及其计量比大部分指标与土壤指标的关系能够被内稳态模型很好地模拟(P<0.01);其中叶片N∶P、微生物C、N对土壤养分变化较为敏感;其他指标比较稳定。研究表明植物和微生物在面对土壤养分变化时均会通过自我调节呈现内稳态性,说明刺槐在黄土丘陵区有较好的适应性;微生物对土壤养分的变化比植物更加敏感,其养分和计量比指标能较好地指示土壤恢复状况。
        The homeostasis characteristics of plants and microbes during vegetation restoration are important indicators of the ability of organisms to adapt to environmental changes and also provide insights into ecosystem nutrient cycling. The aim of the present study was to investigate the C, N, and P contents and ecological stoichiometric ratios(leaves, soil, and soil microbial biomass) of five Robinia pseudoacacia forests in the Loess Hilly Region of China, selected based on their restoration ages(i.e., 5, 10, 20, 30, and 45 years). The homeostasis characteristics of leaves and soil microbial biomass along with stand ages were emphatically revealed. Each of the forest included three replicate lands. Each replicate land included three sample plots(20 m × 20 m), and soil samples were collected from five points in each plot by using a soil auger(4 cm diameter), before being homogenized and analyzed. Leaves samples were collected from 10 individual trees in each sample plot. Vegetation surveys included five randomly selected plots(1 m × 1 m) at each site. The results showed that:(1) The C and N contents of the leaves, soil, and soil microbial biomass all increased with recovery duration(P<0.01), and the P contents increased, although not significantly.(2) The C∶N ratios of the leaves, soil, and microbial biomass were 17.03—26.03, 9.55—16.94, and 5.57—10.76, respectively, whereas the C∶P ratios were 465.04—634.48, 19.89—65.81, and 39.64—110.53, and the N∶P ratios were 17.89—37.03, 1.24—4.68, and 7.15—10.26, respectively. All stoichiometric characteristic ratios showed mostly increase trends with the increase of the recovery age, except for the leaf C∶N was decreased(P<0.01).(3) The relationships between C, N, and P contents and their ratios in the leaves and microbial biomass with corresponding soil parameters can be adequately simulated using an internal homeostasis model(P<0.01). Only leaf N∶P and microbe C and N contents were sensitive to changes in the soil nutrient contents. These results indicate that plants and microbes reach homeostasis by self-regulation, regardless of soil nutrient changes, thereby suggesting that R. pseudoacacia forests in the Loess Hilly Region are well adapted to environmental change. However, compared to plants, soil microbes were more sensitive to environmental changes, indicating that soil microbial biomass nutrient content can be used as an indicator of soil restoration status in R. pseudoacacia forests.
引文
[1] Hessen D O,Elser J J.Elements of ecology and evolution.Oikos,2005,109(1):3- 5.
    [2] Sterner R W,Elser J J.Ecological Stoichiometry:The Biology of Elements from Molecules to the Biosphere.Princeton,New Jersey:Princeton University Press,2002.
    [3] Zechmeister-Boltenstern S,Keiblinger K M,Mooshammer M,Peňuelas J,Richter A,Sardans J,Wanek W.The application of ecological stoichiometry to plant-microbial-soil organic matter transformations.Ecological Monographs,2015,85(2):133- 155.
    [4] 李鑫,曾全超,安韶山,董扬红,李娅芸.黄土高原纸坊沟流域不同植物叶片及枯落物的生态化学计量学特征研究.环境科学,2015,36(3):1084- 1091.
    [5] Persson J,Fink P,Goto A,Hood J M,Jonas J,Kato S.To be or not to be what you eat:regulation of stoichiometric homeostasis among autotrophs and heterotrophs.Oikos,2010,119(5):741- 751.
    [6] Yu Q,Chen Q S,Elser J J,He N P,Wu H H,Zhang G M,Wu J G,Bai Y F,Han X G.Linking stoichiometric homoeostasis with ecosystem structure,functioning and stability.Ecology Letters,2010,13(11):1390- 1399.
    [7] Han W X,Fang J Y,Reich P B,Woodward F I,Wang Z H.Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate,soil and plant functional type in China.Ecology Letters,2011,14(8):788- 796.
    [8] Tessier J T,Raynal D J.Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation.Journal of Applied Ecology,2003,40(3):523- 534.
    [9] 吴建平,韩新辉,许亚东,任成杰,杨改河,任广鑫.黄土丘陵区不同植被类型下土壤与微生物C,N,P化学计量特征研究.草地学报,2016,24(4):783- 792.
    [10] Spohn M.Element cycling as driven by stoichiometric homeostasis of soil microorganisms.Basic and Applied Ecology,2016,17(6):471- 478.
    [11] Fanin N,Fromin N,Buatois B,H?ttenschwiler S.An experimental test of the hypothesis of non-homeostatic consumer stoichiometry in a plant litter-microbe system.Ecology Letters,2013,16(6):764- 772.
    [12] 许淼平,任成杰,张伟,陈正兴,付淑月,刘伟超,杨改河,韩新辉.土壤微生物生物量碳氮磷与土壤酶化学计量对气候变化的响应机制.应用生态学报,2018,29(7):2445- 2454.
    [13] Wang H,Li H Y,Zhang Z J,Muehlbauer J D,He Q,Xu X H,Yue C L,Jiang D Q.Linking stoichiometric homeostasis of microorganisms with soil phosphorus dynamics in wetlands subjected to microcosm warming.PLoS One,2014,9(1):e85575.
    [14] 李晴宇.盐碱胁迫条件下羊草的生态化学计量内稳性研究[D].长春:吉林大学,2017.
    [15] 陶韦,武嘉文,刘长发,方蕾,刘远,苑静涵,李晋.翅碱蓬生态化学计量内稳性对模拟氮磷沉降的响应.水生态学杂志,2017,38(4):18- 26.
    [16] Yu Q,Elser J J,He N P,Wu H H,Chen Q S,Zhang G M,Han X G.Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland.Oecologia,2011,166(1):1- 10.
    [17] 汪宗飞,郑粉莉.黄土高原子午岭地区人工油松林碳氮磷生态化学计量特征.生态学报,2018,38(19):6870- 6880.
    [18] 刘国彬,上官周平,姚文艺,杨勤科,赵敏娟,党小虎,郭明航,王国梁,王兵.黄土高原生态工程的生态成效.中国科学院院刊,2017,32(1):11- 19.
    [19] Deng J,Sun P S,Zhao F Z,Han X H,Yang G H,Feng Y Z,Ren G X.Soil C,N,P and its stratification ratio affected by artificial vegetation in subsoil,loess Plateau China.PLoS One,2016,11(3):e0151446.
    [20] 葛晓改,曾立雄,肖文发,黄志霖,周本智.模拟N沉降下不同林龄马尾松林凋落叶分解-土壤C、N化学计量特征.生态学报,2017,37(4):1147- 1158.
    [21] 鲍士旦.土壤农化分析(第三版).北京:中国农业出版社,2000.
    [22] Wu J,Joergensen R G,Pommerening B,Chaussod R,Brookes P C.Measurement of soil microbial biomass C by fumigation--extraction--an automated procedure.Soil Biology and Biochemistry,1990,22(8):1167- 1169.
    [23] 冉宜凡,许明祥,李彬彬,马露洋,张圣民.黄土丘陵区不同土壤-微生物-植物系统生态化学计量特征对肥力梯度的响应.西北农林科技大学学报:自然科学版,2017,45(10):77- 84,93- 93.
    [24] 孙岩,何明珠,王立.降水控制对荒漠植物群落物种多样性和生物量的影响.生态学报,2018,38(7):2425- 2433.
    [25] 贺纪正,陆雅海,傅伯杰.土壤生物学前沿.北京:科学出版社,2015.
    [26] 刘玉林,朱广宇,邓蕾,陈磊,上官周平.黄土高原植被自然恢复和人工造林对土壤碳氮储量的影响.应用生态学报,2018,29(7):2163- 2172.
    [27] 邓强,李婷,袁志友,焦峰.黄土高原4种植被类型的细根生物量和年生产量.应用生态学报,2014,25(11):3091- 3098.
    [28] 蒋跃利,赵彤,闫浩,黄懿梅,安韶山.黄土丘陵区不同土地利用方式对土壤微生物量碳氮磷的影响.水土保持通报,2013,33(6):62- 68.
    [29] Elser J J,Sterner R W,Gorokhova E,Fagan W F,Markow T A,Cotner J B,Harrison J F,Hobbie S E,Odell G M,Weider L W.Biological stoichiometry from genes to ecosystems.Ecology Letters,2000,3(6):540- 550.
    [30] 马任甜,安韶山,黄懿梅.黄土高原不同林龄刺槐林碳、氮、磷化学计量特征.应用生态学报,2017,28(9):2787- 2793.
    [31] ?gren G I.Stoichiometry and nutrition of plant growth in natural communities.Annual Review of Ecology,Evolution,and Systematics,2008,39:153- 170.
    [32] Han W X,Fang J Y,Guo D L,Zhang Y.Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China.New Phytologist,2005,168(2):377- 385.
    [33] 马露莎,陈亚南,张向茹,杨佳佳,安韶山.黄土高原刺槐叶片生态化学计量学特征.水土保持研究,2014,21(3):57- 61,67- 67.
    [34] 朱秋莲,邢肖毅,张宏,安韶山.黄土丘陵沟壑区不同植被区土壤生态化学计量特征.生态学报,2013,33(15):4674- 4682.
    [35] 曾全超,李鑫,董扬红,安韶山.黄土高原延河流域不同植被类型下土壤生态化学计量学特征.自然资源学报,2016,31(11):1881- 1891.
    [36] 胡培雷,王克林,曾昭霞,张浩,李莎莎,宋希娟.喀斯特石漠化地区不同退耕年限下桂牧1号杂交象草植物-土壤-微生物生态化学计量特征.生态学报,2017,37(3):896- 905.
    [37] Kou M,Garcia-Fayos P,Hu S,Jiao J Y.The effect of Robinia pseudoacacia afforestation on soil and vegetation properties in the Loess Plateau (China):a chronosequence approach.Forest Ecology and Management,2016,375:146- 158.
    [38] 周正虎,王传宽.微生物对分解底物碳氮磷化学计量的响应和调节机制.植物生态学报,2016,40(6):620- 630.
    [39] 田中民.根系分泌物在植物磷营养中的作用.咸阳师范学院学报,2001,16(6):60- 63,69- 69.
    [40] Zhou Z H,Wang C K,Jiang L F,Luo Y Q.Trends in soil microbial communities during secondary succession.Soil Biology and Biochemistry,2017,115:92- 99.
    [41] Yu Q,Wilcox K,La Pierre K,Knapp A K,Han X G,Smith M D.Stoichiometric homeostasis predicts plant species dominance,temporal stability,and responses to global change.Ecology,2015,96(9):2328- 2335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700