用户名: 密码: 验证码:
基于流固耦合的管道车振动运移水力特性数值模拟与试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation and tests for vibration migration hydraulic characteristics of a piped carriage based on fluid-structure interaction
  • 作者:张春晋 ; 孙西欢 ; 李永业 ; 张学琴
  • 英文作者:ZHANG Chunjin;SUN Xihuan;LI Yongye;ZHANG Xueqin;School of Hydro Science & Engineering, Taiyuan University of Technology;Jinzhong University;Zhangqiu Yellow River Bureau;
  • 关键词:筒装料管道水力输送 ; 流固耦合 ; 水力特性 ; 数值模拟 ; 管道车
  • 英文关键词:tube-contained raw material pipeline hydraulic conveying;;fluid-structure interaction;;hydraulic characteristics;;numerical simulation;;piped carriage
  • 中文刊名:振动与冲击
  • 英文刊名:Journal of Vibration and Shock
  • 机构:太原理工大学水利科学与工程学院;晋中学院;章丘黄河河务局;
  • 出版日期:2019-03-15
  • 出版单位:振动与冲击
  • 年:2019
  • 期:05
  • 基金:国家自然科学基金资助项目(51179116;51109155);; 山西省自然科学基金项目(2015011067;201701D221137)
  • 语种:中文;
  • 页:259-266
  • 页数:8
  • CN:31-1316/TU
  • ISSN:1000-3835
  • 分类号:TV134
摘要
鉴于传统运输方式在环境污染与能源危机方面存在的问题,提出了一种新型节能环保的运输方式——筒装料管道水力输送技术。为了进一步分析管道车在平直管段振动运移的水力特性,采用ANSYS Fluent 12.0对管道车结构响应和管道内部流场进行流固耦合数值模拟,其中流场计算采用RNG k-ε紊流模型,结构响应计算采用结构动力学方程。结果表明:模拟值与试验值基本吻合,且相对误差不超过4.8%;管道车在平直管段的瞬时速度在一定范围内呈不规则振动变化,可以将管道车的振动运移视为恒定运动;管道车近壁面流场区域的沿程测压管水头呈"W"型分布规律;管道车运移时平均能耗与管道流量之间呈线性变化趋势。该研究对进一步准确掌握管道车在平直管段振动运移过程中轴向流速与压强的瞬态变化特性具有重要的参考价值。
        To solve existing problems in environmental pollution and energy crisis for traditional transport modes, a new energy-saving and environment-protecting transport mode called the tube-contained raw material pipeline hydraulic transport technique was proposed. In order to further analyze vibrational migration hydraulic characteristics of a piped carriage in a horizontal straight pipeline, the software ANSYS Fluent 12.0 was used to do numerical simulation with fluid-structure interaction for structural responses of the piped carriage and the pipeline inside flow field. The flow field prediction was calculated with RNG k-ε turbulent model, while structure responses of the piped carriage were computed with structural dynamic equations. The results showed that the simulated values agree well with those of tests, and the relative errors are not larger than 4.8%; the instantaneous speed of the piped carriage in the horizontal straight pipeline reveals irregular vibration changes within a certain range, the vibration migration of the piped carriage can be regarded as a constant motion; the distribution of water head of pressure-measuring pipe in the area near wall of the piped carriage is W-shaped; the average energy loss of the piped carriage during migration is linearly related to the pipeline flow; the study results are valuable for further accurately grasping the transient variation characteristics of axial flow velocity and pressure during the vibrational migration of the piped carriage in a horizontal straight pipeline.
引文
[1] 孙西欢,李永业,阎庆绂. 筒装料管道水力输送管道车起动条件的试验研究[C]//第二十届全国水动力学研讨会论文集,2007: 425-431.
    [2] 李永业,孙西欢,李飞,等. 不同型号的管道车在管道中运移的水力特性[J]. 排灌机械工程学报,2010, 28(2): 174-178. LI Yongye, SUN Xihuan, LI Fei, et al. Hydraulic characteristics of transportation of different piped carriages in pipe[J], Journal of Drainage and Irrigation Machinery Engineering, 2010, 28(2): 174-178.
    [3] LATTO B, CHOW K W. Hydrodynamic transport of cylindrical capsules in a vertical pipeline[J]. Canadian Journal of Chemical Engineering, 1982, 60(6): 713-722.
    [4] KHALIL M F, KASSAB S Z, ADAM I G, et al. Turbulent flow around single concentric long capsule in a pipe[J]. Applied Mathematical Modelling, 2010, 34(8): 2000-2017.
    [5] 王锐,孙西欢,李永业. 管道车在不同雷诺数条件下的输送特性[J]. 排灌机械工程学报,2011, 29(4): 343-346. WANG Rui, SUN Xihuan, LI Yongye. Transportation characteristics of piped carriage with different Reynolds numbers[J], Journal of Drainage and Irrigation Machinery Engineering, 2011, 29(4): 343-346.
    [6] MISHRA R, SINGH S N, SESHADRI V. Improved model for the prediction of pressure drop and velocity field in multi-sized particulate slurry flow through horizontal pipes[J]. Powder Handling and Processing, 1998, 10(3): 279-287.
    [7] VLASAK P, BERMAN V A. Contribution to hydro-transport of capsules in bend and inclined pipeline sections[J]. Handbook of Conveying and Handing of Particulate Solids, 2001, 10(1): 521-529.
    [8] CHENG C C, LIU H. Tilt of stationary capsule in pipe[J]. Journal of Hydraulic Engineering, 1996, 122(2): 90-96.
    [9] WANG J, SUN X H, LI Y Y. Analysis of pressure characteristics of tube-contained raw material pipeline hydraulic transportation under different discharges[C]//International Conference on Electrical, Mechanical and Industrial Engineering. Phuket, 2016.
    [10] GARNER R G, RAITHBY G D. Laminar flow between a circular tube and a cylindrical eccentric capsule[J]. Canadian Journal of Chemical Engineering, 1978, 56(2): 176-180.
    [11] SUB I, CHADDOCK J B. Drag calculations for vehicles in very long tubes from turbulent flow theory[J]. Journal of Fluids Engineering, 1981, 103(2): 361-366.
    [12] AZOUZ I, SHIRAZI S A. Numerical simulation of drag reducing turbulent flow in annular conduits[J]. Journal of Fluid Engineering, 1997, 119 (4) :838-846.
    [13] 孙蕾,孙西欢,李永业,等.不同直径比条件下同心环状缝隙流的水力特性[J]. 人民黄河,2014, 36(11): 110-113. SUN Lei, SUN Xihuan, LI Yongye, et al. Cyclical slit flow of concentricity under different diameter ratios[J]. Yellow River, 2014, 36(11): 110-113.
    [14] POLDERMAN H G. Design rules for hydraulic capsule transport systems, Journal of pipelines, 1982(3): 123-136.
    [15] HUANG X, LIU H, MARRERO T R. Polymer drag reduction in hydraulic capsule pipeline[J]. AIChE Journal, 1997, 43(4): 1117-1121.
    [16] 张琪琦,孙西欢,李永业. 圆柱体绕流环隙流场轴向流速及水力损失试验研究[J]. 长江科学院院报,2015, 32(4): 51-54. ZHANG Qiqi, SUN Xihuan, LI Yongye. Experimental research on axial flow velocity and hydraulic energy consumption in annulus flow field around cylinder[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(4): 51-54.
    [17] 贾晓萌,李永业,孙西欢. 筒装料管道车在不同流量下运动时水力特性研究[J]. 人民长江,2017, 48(14): 65-68. JIA Xiaomeng, LI Yongye, SUN Xihuan. Research on hydraulic characteristics of pipe-conveying vehicle of charged bucket under different flow conditions[J]. Yangtze River, 2017, 48(14): 65-68.
    [18] YANAIDA K, TANAKA M. Drag coefficient of a capsule inside a vertical angular pipe[J]. Powder Technology, 1997, 94(3): 239-243.
    [19] 郭晓朦. 不同输送荷载管道车在平直管道运行时的车后水力特性研究[D]. 太原: 太原理工大学, 2015.
    [20] 张雪兰,孙西欢,李永业. 平直管段不同宽度动边界环隙流场特性[J]. 排灌机械工程学报,2013, 31(4): 353-357. ZHANG Xuelan, SUN Xihuan, LI Yongye. Characteristics of annulus moving boundary flow in straight pipe segments of different widths[J], Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(4): 353-357.
    [21] 刘厚林,徐欢,吴贤芳,等. 基于流固耦合的导叶式离心泵强度分析[J]. 振动与冲击,2013, 32(12): 27-30. LIU Houlin, XU Huan, WU Xianfang, et al. Strength analysis of a diffuser pump based on fluid-structure interaction[J]. Journal of Vibration and Shock, 2013, 32(12): 27-30.
    [22] 张春晋,李永业,孙西欢. 明流泄洪洞水力特性的二维数值模拟与试验研究[J]. 长江科学院院报,2016, 33(1): 54-60. ZHANG Chunjin, LI Yongye, SUN Xihuan. Two-dimensional numerical simulation and experimental research of hydraulic characteristics in spillway tunnel with free water surface[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(1): 54-60.
    [23] 何小宝,严波,伍川,等. 双分裂导线尾流诱发振荡数值模拟研究[J]. 振动与冲击,2017, 36(4): 59-98. HE Xiaobao, YAN Bo, WU Chuan, et al. A numerical simulation on wake-induced oscillation of twin bundle conductor lines[J]. Journal of Vibration and Shock, 2017, 36(4): 59-98.
    [24] 朱世权,李海元,陈志华,等. 基于双向流固耦合的机载导弹分离动力学研究[J]. 工程力学,2017, 34(10): 217-248. ZHU Shiquan, LI Haiyuan, CHEN Zhihua, et al. Numerical investigations on missile separation of an aircraft based on CFD/CSD two-way coupling method[J]. Engineering Mechanics, 2017, 34(10): 217-248.
    [25] 张春晋,孙西欢,李永业,等. 筒装料管道水力输送动边界环状缝隙流水力特性数值模拟[J]. 农业工程学报,2017, 33(19): 76-85. ZHANG Chunjin, SUN Xihuan, LI Yongye, et al. Numerical simulation of hydraulic characteristics of cyclical slit flow with moving boundary of tube-contained raw materials pipelines hydraulic transportation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(19): 76-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700