用户名: 密码: 验证码:
轻型组合桥面弧形缺口应力特征分析及现场试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Stress Characteristic Analysis and Field Test on the Cutouts of Light-weight Composite Deck
  • 作者:李立峰 ; 曾研 ; 裴必达 ; 王连华
  • 英文作者:LI Li-feng;ZENG Yan;PEI Bi-da;WANG Lian-hua;School of Civil Engineering, Hunan University;
  • 关键词:桥梁工程 ; 疲劳应力 ; 有限元分析 ; 轻型组合桥面 ; 现场试验
  • 英文关键词:bridge engineering;;fatigue stress;;finite element analysis;;light-weight composite bridge deck;;field test
  • 中文刊名:中国公路学报
  • 英文刊名:China Journal of Highway and Transport
  • 机构:湖南大学土木工程学院;
  • 出版日期:2019-08-15
  • 出版单位:中国公路学报
  • 年:2019
  • 期:08
  • 基金:国家自然科学基金项目(51278183);; 湖南省住房和城乡建设厅2015年度科学技术项目(KY201508)
  • 语种:中文;
  • 页:70-82
  • 页数:13
  • CN:61-1313/U
  • ISSN:1001-7372
  • 分类号:U443.31
摘要
为深入研究钢-UHPC(Ultra-high Performance Concrete)轻型桥面组合体系对弧形缺口的应力改善程度,结合一座大跨自锚式悬索桥,针对正交异性钢桥面板(Orthotropic Steel Deck, OSD)结构铺设UHPC层前、后2种情形,选择3种不同弧形缺口形式,分别建立空间实体有限元分析模型,并采用简化加载、响应面加载2种方式进行分析,由此获得了弧形缺口应力、变形分布规律与车辆轴载位置之间的关系,揭示了弧形缺口出现峰值拉、压应力的原因。以此为基础,采用三轴加载车分别在铺设UHPC层前、后进行现场跑车试验,采集了弧形缺口多个关注点在不同横向加载位置的应力响应曲线,获得了各点的应力极值,并与有限元结果进行了对比分析。研究结果表明:铺设UHPC前、后弧形缺口关注点应力特征随荷载分布规律基本相同,面内应力为主、面外应力较小,拉应力主要由荷载偏载产生、加载区域长,而压应力主要由荷载直接作用于弧形缺口顶部产生,且加载区域短;采用传统简化加载方式难以获得弧形缺口处准确的拉应力峰值,并可能导致应力幅偏小,并由此提出了合理的加载方式;本桥五段线弧形缺口形式受力相对较好;铺设UHPC层能有效减少弧形缺口应力峰值,并在一定程度上缓解疲劳问题,是OSD结构提高疲劳性能的一种有效方案。
        The purpose of this research is to study the improvements in the stress state of a cutout after laying an ultra-high performance concrete(UHPC) layer on a steel-UHPC light-weight composite deck. A large-span self-anchored suspension bridge was chosen, and finite element models of an orthotropic steel deck(OSD) were built with/without a UHPC layer, including three types of the cutout. The traditional simplified loading method, and the response surface loading method were used in the finite element analysis to obtain the relationship between stress/displacement distributions and vehicle axle loading positions. Then, the cause of peak tension stress and peak compressive stress on the cutout was revealed by analyzing the deformation characteristics of the cutout. A field test was carried out using a loading vehicle in which the stress responses of the cutout at different lateral loading positions were measured for the OSD with/without the UHPC layer. Based on the experimental data, the measured results show that it follows a similar law as the calculated results; and the maximum stresses of the cutout were found. The numerical calculation results were also compared with the field measurement results. This research shows that the regularities of the stress distribution of the cutout are basically the same for the OSD with/without the UHPC layer, and the in-plane stress is dominant relative to the out-of-plane stress. A large portion of the transverse influence line of the cutout is in tension, and a small portion is in compression. The compressive stress is caused mainly by the load right above the cutout, whereas the tensile stress is mainly generated by the load that deviates from the position of the cutout. However, it is difficult to obtain the accurate peak tensile stress of the cutout using the traditional simplified loading method, and it may produce a smaller stress range. Therefore, the response surface loading method is recommended for fatigue design of the steel-UHPC light-weight composite bridge. Furthermore, our research shows that the fatigue performance of the cutout, which was used in a self-anchored bridge is the best among these cutout forms. The peak stress of the cutout was lowered effectively, and the fatigue performance improved significantly after laying the UHPC layer. Hence, the UHPC layer solution can be used as an effective scheme for improving the fatigue performance of the OSD.
引文
[1] YA S,YAMADA K,SHIKAWA T.Fatigue Evaluation of Rib-to-deck Welded Joints of Orthotropic Steel Bridge Deck [J].Journal of Bridge Engineering,2011,16 (4):492-499.
    [2] 王春生,冯亚成.正交异性钢桥面板的疲劳研究综述[J].钢结构,2009,9:10-13,32.WANG Chun-sheng,FENG Ya-cheng.Review of Fatigue Research for Orthotropic Steel Bridge Decks [J].Steel Construction,2009,9:10-13,32.
    [3] 丁楠,邵旭东.轻型组合桥面板的疲劳性能研究[J].土木工程学报,2015,48(1):74-81 DING Nan,SHAO Xu-dong.Study on Fatigue Performance of Light-weighted Composite Bridge Deck [J].China Civil Engineering journal,2015,48 (1):74-81.
    [4] CHENG G,CHEN X H,WANG X.Analysis on Cracking of Deck Pavement on Jiangyin [J].Journal of Southeast University (English Edition),2005 (4):490-494.
    [5] 罗志强,王育清.钢箱梁桥面沥青混凝土铺装技术分析[J].公路交通科技,2007(5):90-94.LUO Zhi-qiang,WANG Yu-qing.Technique Analysis for Surfacing Technology of Asphalt Concrete on Steel Bridge Deck [J].Journal of Highway and Transportation Research and Development,2007 (5):90-94.
    [6] 张清华,卜一之,李乔.正交异性钢桥面板疲劳问题的研究进展[J].中国公路学报,2017,30(3):14-30,39.ZHANG Qing-hua,BU Yi-zhi,LI Qiao.Review on Fatigue Problems of Orthotropic Steel Bridge Deck [J].China Journal of Highway and Transport,2017,30 (3):14-30,39.
    [7] TSAKOPOULOS P A,FISHER J W.Full-scale Fatigue Tests of Steel Orthotropic Decks for the Williamsburg Bridge [J].Journal of Bridge Engineering,2003,8 (5):323-333.
    [8] JEN W C,YEN B T.Stress in Orthotropic Steel Deck Components Due to Vehicular Loads [C] // ASCE.Proceedings of the Structures Congress.Reston:ASCE,2005:1-12.
    [9] WOLCHUK R,OSTAPENKO A.Secondary Stresses in Closed Orthotropic Deck Ribs at Floor Beams [J].Journal of Structural Engineering,1992,118 (2):582-595.
    [10] LEENDERTZ J S,KOLSTEIN M H.The Behaviour of Trough Stiffener to Crossbeam Connections in Orthotropic Steel Bridge Decks [J].Heron:English Edition,1995,40:217-259.
    [11] DE CORTE W.Parametric Study of Floorbeam Cutouts for Orthotropic Bridge Decks to Determine Shape Factors [J].Bridge Structures Assessment Design & Construction,2009,5 (2):75-85.
    [12] 吴臻旺,郑凯锋,税彦斌,等.钢箱梁正交异性桥面板球扁钢纵肋球头朝向和横隔板空孔的优化[J].公路交通科技,2011,28 (9):112-118.WU Zhen-wang,ZHENG Kai-feng,SHUI Yan-bin,et al.Optimization of Bulb Direction and Diaphragm Cutout of Bulb Flat Ribs in Steel Orthotropic Deck of Box Girder [J].Journal of Highway and Transportation Research and Development,2011,28 (9):112-118.
    [13] 李立峰,张东波,袁卓亚,等.正交异性钢桥面板中弧形缺口的受力分析[J].公路交通科技,2012,29(4):55-61.LI Li-feng,ZHANG Dong-bo,YUAN Zhuo-ya,et al.Stress Analysis of Arc-shaped Cutouts in Steel Orthotropic Deck Plates [J].Journal of Highway and Transportation Research and Development,2012,29 (4):55-61.
    [14] 王春生,付炳宁,张芹,等.正交异性钢桥面板足尺疲劳试验[J].中国公路学报,2013,26(2):69-76.WANG Chun-sheng,FU Bing-ning,ZHANG Qin,et al.Fatigue Test on Full-scale Orthotropic Steel Bridge Deck [J].China Journal of Highway and Transport,2013,26 (2):69-76.
    [15] 赵欣欣.正交异性钢桥面板疲劳设计参数和构造细节研究[D].北京:中国铁道科学研究院,2011.ZHAO Xin-xin.Research on Fatigue Design Parameter and Structural [D].Beijing:China Academy of Railway Sciences,2011.
    [16] 祝志文,黄炎,向泽,等.货运繁重公路正交异性板钢桥弧形切口的疲劳性能[J].中国公路学报,2017,30(3):104-112.ZHU Zhi-wen,HUANG Yan,XIANG Ze,et al.Fatigue Performance of Floor Beam Cutout Detail of Orthotropic Steel Bridge on Heavy Freight Transportation Highway [J].China Journal of Highway and Transport,2017,30 (3):104-112.
    [17] BUITELAAR P.Ultra Thin Heavy Reinforced High Performance Concrete Overlays [C] // K?NIG G.Proceedings of the 6th International Symposium on Utilization of High Strength/High Performance Concrete.Leipzig:Institute for Structural Concrete and Building Materials,2002:1577-1590.
    [18] WALTER R,OLESEN J F,STANG H,et al.Analysis of an Orthotropic Deck Stiffened with a Cement-based Overlay [J].Journal of Bridge Engineering,2007,12 (3):350-363.
    [19] 吴冲,刘海燕,张胜利,等.桥面铺装对钢桥面板疲劳应力幅的影响[J].中国工程科学,2010,12(7):39-42.WU Chong,LIU Hai-yan,ZHANG Sheng-li,et al.Influence of Pavement on Fatigue Stress Range of Orthotropic Steel Deck [J].Engineering Sciences,2010,12 (7):39-42.
    [20] SHAO X,YI D,HUANG Z,et al.Basic Performance of the Composite Deck System Composed of Orthotropic Steel Deck and Ultrathin RPC Layer [J].Journal of Bridge Engineering,2013,18 (5):417-428.
    [21] 李嘉,冯啸天,邵旭东,等.STC钢桥面铺装新体系的力学计算与实桥试验对比分析[J].中国公路学报,2014,27(3):39-44.LI Jia,FENG Xiao-tian,SHAO Xu-dong,et al.Comparison of Mechanical Calculation and Actual Test for New STC Steel Bridge Paving System [J].China Journal of Highway and Transport,2014,27 (3):39-44.
    [22] 《中国公路学报》编辑部.中国桥梁工程学术研究综述·2014 [J].中国公路学报,2014,27(5):1-96.Editorial Department of China Journal of Highway and Transport.Review on China’s Bridge Engineering Research [J].China Journal of Highway and Transport,2014,27(5):1-96.
    [23] 邵旭东,曹君辉,易笃涛,等.正交异性钢板-薄层RPC组合桥面基本性能研究[J].中国公路学报,2012,25(2):40-45.SHAO Xu-dong,CAO Jun-hui,YI Du-tao,et al.Research on Basic Performance of Composite Bridge Deck System with Orthotropic Steel Deck and Thin RPC Layer [J].China Journal of Highway and Transport,2012,25 (2):40-45
    [24] 邵旭东,张松涛,张良,等.钢-超薄UHPC层轻型组合桥面性能研究[J].重庆交通大学学报:自然科学版,2016,35(1):16-21.SHAO Xu-dong,ZHANG Song-tao,ZHANG Liang,et al.Research on Light-type Composite Bridge Deck System with Steel and Ultra-thin UHPC Layer [J].Journal of Chongqing Jiaotong University:Natural Science,2016,35 (1):16-21.
    [25] XIAO Z G,YAMADA K,YA S,et al.Stress Analyses and Fatigue Evaluation of Rib-to-deck Joints in Steel Orthotropic Decks [J].International Journal of Fatigue,2008,30 (8):1387-1397.
    [26] 王甜,祝志文,黄炎,等.纵肋-横隔板弧形切口应力响应的面外特征研究[J].钢结构,2016,9:7-11,101.WANG Tian,ZHU Zhi-wen,HUANG Yan,et al.Stress Characteristics of Out-of-plane Distortion Around Diaphragm Cutout at Rib-diaphragm Intersection [J].Steel Construction,2009,9:7-11,101.
    [27] 唐亮,黄李骥,刘高.正交异性钢桥面板横梁弧形切口周边应力分析[J].公路交通科技,2011(6):83-90.TANG Liang,HUANG Li-ji,LIU Gao.FEA of Stress Along Cope Hole Edge of Crossbeam in Orthotropic Steel Deck [J].Journal of Highway and Transportation Research and Development,2011 (6):83-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700