用户名: 密码: 验证码:
有机酸-石膏联合作用改善赤泥碱性电化学性能(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Improvement of alkaline electrochemical characteristics of bauxite residue amendment with organic acid and gypsum
  • 作者:孔祥峰 ; 李楚璇 ; 江钧 ; 黄隆斌 ; HARTLEY ; William ; 吴川 ; 薛生国
  • 英文作者:KONG Xiang-feng;LI Chu-xuan;JIANG Jun;HUANG Long-bin;HARTLEY William;WU Chuan;XUE Sheng-guo;School of Metallurgy and Environment, Central South University;Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland;Crop and Environment Sciences Department, Harper Adams University;
  • 关键词:赤泥 ; 碱性调控 ; 有机酸 ; 石膏 ; 电化学特性 ; 赤泥土壤化
  • 英文关键词:bauxite residue;;alkalinity regulation;;organic acid;;gypsum;;electrochemical characteristic;;soil formation in bauxite residue
  • 中文刊名:Journal of Central South University
  • 英文刊名:中南大学学报(英文版)
  • 机构:School of Metallurgy and Environment, Central South University;Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland;Crop and Environment Sciences Department, Harper Adams University;
  • 出版日期:2019-02-15
  • 出版单位:Journal of Central South University
  • 年:2019
  • 期:02
  • 基金:Projects(41877511,41842020)supported by the National Natural Science Foundation of China
  • 语种:英文;
  • 页:170-179
  • 页数:10
  • CN:43-1516/TB
  • ISSN:2095-2899
  • 分类号:X758
摘要
本文开展了有机酸-石膏联合转化赤泥碱性电化学性能的研究,探究了有机酸-石膏作用过程中zeta电位、等电点、矿物表面质子化、表面碱性官能团—OH的转变及其对赤泥堆场生态修复相关理化性质的影响。为了更好地评价有机酸的转化效果,利用无机酸(盐酸、硫酸)进行对比分析。采用有机酸-石膏中和赤泥的碱性,可有效改善赤泥的碱性电化学性能,处理后的赤泥等电点和矿物表面质子化程度显著降低,矿物颗粒表面碱性官能团—OH的含量也明显减少。XRD结果揭示有机酸、无机酸、酸-石膏联合转化了赤泥中主要的碱性物相钙霞石、方解石、钙铝榴石,但有机酸-石膏联合作用进一步促进了钙霞石的溶解。从SEM图可以看出,有机酸-石膏联合作用改善了赤泥颗粒的分布,也有利于等电点的降低及矿物颗粒表面碱性官能团—OH的重新分布。有机酸-石膏联合调控赤泥碱性的效果非常显著,可进一步促进碱性的转化,对实现堆场赤泥的土壤化具有重要的作用。
        Neutralization of alkaline properties of bauxite residue(BR) by using organic acid and gypsum additions may effectively improve electrochemical properties and alleviate physicochemical barriers to ecological rehabilitation.Mineral acids, citric acid and hybrid acid–gypsum additions were compared for their potential to transform and improve zeta potential, isoelectric point(IEP), surface protonation and active alkaline —OH groups, which are critical factors for further improvement of physicochemical and biological properties later. Isoelectric points of untransformed bauxite residue and six transformed derivatives were determined by using electroacoustic methods. Electrochemical characteristics were significantly improved by the amendments used, resulting in reduced IEP and —OH groups and decreased surface protonation for transformed residues. XRD results revealed that the primary alkaline minerals of cancrinite, calcite and grossular were transformed by the treatments. The treatments of citric acid and gypsum promoted the dissolution of cancrinite. From the SEM examination, citric acid and gypsum treatments contributed to the reduction in IEP and redistribution of —OH groups on particle surfaces. The collective evidence suggested that citric acid and gypsum amendments may be used firstly to rapidly amend bauxite residues for alleviating the caustic conditions prior to the consideration of soil formation in bauxite residue.
引文
[1]KONG Xiang-feng,LI Meng,XUE Sheng-guo,HARTLEYWilliam,CHEN Cheng-rong,WU Chuan,LI Xiao-fei,LIYi-wei.Acid transformation of bauxite residue:Conversion of its alkaline characteristics[J].Journal of Hazardous Materials,2017,324(B):382-390.DOI:10.1016/j.jhazmat.2016.10.073.
    [2]LI Yi-wei,JIANG Jun,XUE Sheng-guo,MILLAR G,KONG Xiang-feng,LI Xiao-fei,LI Meng,LI Chu-xuan.Effect of ammonium chloride on leaching behavior of alkaline anion and sodium ion in bauxite residue[J].Transactions of Nonferrous Metals Society of China,2018,28(10):2125-2134.DOI:10.1016/S1003-6326(18)64857-5.
    [3]LI Xiao-fei,YE Yu-zhen,XUE Sheng-guo,JIANG Jun,WUChuan,KONG Xiang-feng,HARTLEY W,LI Yi-wei.Leaching optimization and dissolution behavior of alkaline anions in bauxite residue[J].Transactions of Nonferrous Metals Society of China,2018,28(6):1248-1255.DOI:10.1016/S1003-6326(18)64763-6.
    [4]SMART D,CALLERY S,COURTNEY R.The potential for waste-derived materials to form soil covers for the restoration of mine tailings in Ireland[J].Land Degradation&Development,2016,27(3):542-549.DOI:10.1002/ldr.2465.
    [5]KONG Xiang-feng,GUO Ying,XUE Sheng-guo,HARTLEY W,WU Chuan,YE Yu-zhen,CHENG Qing-yu.Natural evolution of alkaline characteristics in bauxite residue[J].Journal of Cleaner Production,2017,143:224-230.DOI:10.1016/j.jclepro.2016.12.125.
    [6]KONG Xiang-feng,JIANG Xing-xing,XUE Sheng-guo,HUANG Ling,HARTLEY W,WU Chuan,LI Xiao-fei.Migration and distribution of saline ions in bauxite residue during water leaching[J].Transactions of Nonferrous Metals Society of China,2018,28(3):534-541.DOI:10.1016/S1003-6326(18)64686-2.
    [7]XUE Sheng-guo,YE Yu-zhen,ZHU Feng,WANG Qiong-li,JIANG Jun,HARTLEY W.Changes in distribution and microstructure of bauxite residue aggregates following amendments addition[J].Journal of Environmental Sciences,2019,78:276-286.DOI:10.1016/j.jes.2018.10.010.
    [8]PONTIKES Y.Bauxite residue valorization and best practices:Preface for the thematic section and some of the work to follow[J].Journal of Sustainable Metallurgy,2016,2(4):313-315.DOI:10.1007/s40831-016-0104-2.
    [9]XUE Sheng-guo,KONG Xiang-feng,ZHU Feng,HARTLEY W,LI Xiao-fei,LI Yi-wei.Proposal for management and alkalinity transformation of bauxite residue in China[J].Environmental Science and Pollution Research,2016,23(13):12822-12834.DOI:10.1007/s11356-016-6478-7.
    [10]ZHU Feng,HOU Jing-tao,XUE Sheng-guo,WU Chuan,WANG Qiong-li,HARTLEY W.Vermicompost and gypsum amendments improve aggregate formation in bauxite residue[J].Land Degradation&Development,2017,28:2109-2120.DOI:10.1002/ldr.2737.
    [11]ZHU Feng,CHENG Qing-yu,XUE Sheng-guo,LI Chu-xuan,HARTLEY W,WU Chuan.TIAN Tao.Influence of natural regeneration on fractal features of residue microaggregates in bauxite residue disposal areas[J].Land Degradation and Development,2018,29(1):138-149.DOI:10.1002/ldr.2848.
    [12]KINNARINEN T,HOLLIDAY L,H?KKINEN A.Dissolution of sodium,aluminum and caustic compounds from bauxite residues[J].Minerals Engineering,2015,79:143-151.DOI:/10.1016/j.mineng.2015.06.007.
    [13]CHVEDOV D,OSTAP S,LE T.Surface properties of red mud particles from potentiometric titration[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001,182(1):131-141.DOI:10.1016/S0927-7757(00)00814-1.
    [14]SAMAL S,RAY A K,BANDOPADHYAY A.Characterization and microstructure observation of sintered red mud-fly ash mixtures at various elevated temperature[J].Journal of Cleaner Production,2015,101:368-376.DOI:10.1016/j.jclepro.2015.04.010.
    [15]RENFORTH P,MAYES W M,JARVIS A P,BURKE I T,MANNING D A C,GRUIZ K.Contaminant mobility and carbon sequestration downstream of the Ajka(Hungary)red mud spill:The effects of gypsum dosing[J].Science of the Total Environment,2012,421-422(3):253-259.DOI:10.1016/j.scitotenv.2012.01.046.
    [16]SANTINI T C,KERR J L,WARREN L A.Microbiallydriven strategies for bioremediation of bauxite residue[J].Journal of Hazardous Materials,2015,293:131-157.DOI:10.1016/j.jhazmat.2015.03.024.
    [17]COURTNEY R,HARRIS J A,PAWLETT M.Microbial community composition in a rehabilitated bauxite residue disposal area:A case study for improving microbial community composition[J].Restoration Ecology,2014,22(6):798-805.DOI:10.1111/rec.12143.
    [18]YE Jie,CONG Xiang-na,ZHANG Pan-yue,HOFFMANN E,ZENG Guang-ming,LIU Yang,FANG Wei,WU Yan,ZHANG Hai-bo.Interaction between phosphate and acid-activated neutralized red mud during adsorption process[J].Applied Surface Science,2015,356(8):128-134.DOI:10.1016/j.apsusc.2015.08.053.
    [19]LIANG Wen-tao,COUPERTHWAITE S J,KAUR G,YANCheng,JOHNSTONE D W,MILLAR G J.Effect of strong acids on red mud structural and fluoride adsorption properties[J].Journal of Colloid and Interface Science,2014,423(3):158-165.DOI:10.1016/j.jcis.2014.02.019.
    [20]COUPERTHWAITE S J,HAN Su-jung,SANTINI T,KAUR G,JOHNSTONE D W,MILLAR G J,FROST R L.Bauxite residue neutralisation precipitate stability in acidic environments[J].Environmental Chemistry,2013,10(6):455-464.DOI:10.1071/EN13048.
    [21]XUE Sheng-guo,WU Yu-jun,LI Yi-wei,KONG Xiang-feng,ZHU Feng,HARTLEY W,LI Xiao-fei,YE Yu-zhen.Industrial wastes applications for alkalinity regulation in bauxite residue:A comprehensive review[J].Journal of Central South University,2019,26(2):268-288.
    [22]DAVIS J A,KENT D B.Surface complexation modeling in aqueous geochemistry[J].Reviews in Mineralogy,1990,23(1):177-260.
    [23]FREIRE T S S,CLARK M W,COMARMOND M J,PAYNE T E,REICHELT-BRUSHETT A J,THOROGOODG J.Electroacoustic isoelectric point determinations of bauxite refinery residues:Different neutralization techniques and minor mineral effects[J].Langmuir,2012,28(32):11802-11811.DOI:10.1021/la301790v.
    [24]KOSMULSKI M.The pH dependent surface charging and points of zero charge.VI.Update[J].Journal of Colloid and Interface Science,2014,426(1):209-212.DOI:10.1016/j.jcis.2014.02.036.
    [25]CLARK M W,HARRISON J J,PAYNE T E.The pH-dependence and reversibility of uranium and thorium binding on a modified bauxite refinery residue using isotopic exchange techniques[J].Journal of Colloid and Interface Science,2011,356(2):699-705.DOI:10.1016/j.jcis.2011.01.068.
    [26]WU F C,TSENG R L,JUANG R S.Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics[J].Chemical Engineering Journal,2009,153(1):1-8.DOI:10.1016/j.cej.2009.04.042.
    [27]ZHU Xiao-bo,LI Wang,GUAN Xue-mao.Kinetics of titanium leaching with citric acid in sulfuric acid from red mud[J].Transactions of Nonferrous Metals Society of China,2015,25(9):3139-3145.DOI:10.1016/S1003-6326(15)63944-9.
    [28]LI Xiao-bin,HUANG Xiu-jiao,QI Tian-gui,ZHOUQiu-sheng,WANG Yi-lin,PENG Zhi-hong,LIU Gui-hua.Preliminary results on selective surface magnetization and separation of alumina-/silica-bearing minerals[J].Minerals Engineering,2015,81:135-141.DOI:10.1016/j.mineng.2015.08.002.
    [29]COURTNEY R,HARRINGTON T,BYRNE K A.Indicators of soil formation in restored bauxite residues[J].Ecological Engineering,2013,58(13):63-68.DOI:10.1016/j.ecoleng.2013.06.022.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700