用户名: 密码: 验证码:
双花木属植物潜在分布区模拟与分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Potential distribution modeling and analysis of Disanthus Maxim.
  • 作者:孟艺宏 ; 徐璕 ; 姜小龙 ; 徐刚标
  • 英文作者:MENG Yihong;XU Xun;JIANG Xiaolong;XU Gangbiao;The Laboratory of Forestry Genetics,Central South University of Forestry and Technology;College of Life Science, Sichuan University;Shanghai Chenshan Botanical Garden;
  • 关键词:双花木属 ; 物种分布区模拟 ; 气候变化 ; 分布动态
  • 英文关键词:Disanthus Maxim.;;species distribution modelling;;climate change;;distribution dynamic
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中南林业科技大学林木遗传育种实验室;四川大学生命科学学院;中国科学院上海辰山植物园;
  • 出版日期:2019-01-18 09:24
  • 出版单位:生态学报
  • 年:2019
  • 期:08
  • 基金:国家“十三五”重点研发计划课题(2016YFC0503103);; 中南林业科技大学研究生科技创新基金(20183002);; 湖南省研究生科研创新项目(CX2018B454)
  • 语种:中文;
  • 页:176-185
  • 页数:10
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:Q948
摘要
气候变化直接影响着物种的分布范围。了解气候变化对濒危物种分布区的影响,是开展保护生物学研究的基础。双花木属(Disanthus Maxim.) 1种1变种,隶属金缕梅科(Hamamelidaceae),为东亚特有濒危物种和典型的中-日间断分布成分,在研究东亚植物区系地理演化方面具有重要的科学价值。本研究基于双花木属植物19个当前居群分布点的气候变量,运用MaxEnt模型预测双花木属植物在末次盛冰期(约22000年前)、当前(1950—2000年)和未来(2060—2080年)气候情景下的潜在分布区的结果显示,受试者工作特征曲线下的面积(AUC=0.9999±0.0001)接近于1,表明MaxEnt模型的预测准确度极高;气候变量贡献率和Jackknife检验评估的结果显示,制约双花木属植物分布的主导气候变量是最湿月降水量和最干月降水量。采用ArcGIS 10.0中的ArcToolbox空间分析工具定量分析比较双花木属的分布动态,基于生境稳定性(N_(stab))、当前与其他时期分布区面积比(N_a)和扩张/收缩程度(N_e)的分析结果揭示,在双花木属植物进化过程中,分布范围经历了收缩过程;未来的温室气体排放量升高程度不同,其适生区呈现不同程度(30%—65%)收缩,特别是RCP 8.5气候情景下,我国武夷山山脉的潜在分布区有可能会丧失。探讨双花木属植物对不同时期气候变化的响应,重建冰期以来该属植物地理分布的变迁历史,分析限制其潜在地理分布的主导气候变量,可为双花木属植物保育措施的制定和东亚地区植物区系物种形成演化的研究提供理论参考。
        Rapid climate change has greatly contributed to the species distribution of Disanthus. Understanding the influence of climate change on the distribution of endangered species is essential for conservation biology. Disanthus Maxim., a genus that includes one species and one variety, is endemic to East Asia. It is the most basal and the oldest genus in Hamamelidaceae, and has a discontinuous distribution across China and Japan. This genus is significant for the study of the phylogeny and the biogeography of East Asia. In this paper, nineteen populations of Disanthus Maxim. were selected to study the potential distribution of this genus during current, Last Glacial Maximum, and future periods, for which the representative concentration pathways of greenhouse gases were 2.6, 4.5, 6.0, and 8.5, respectively. A high area under the receiver operating characteristic curve(AUC=0.9999±0.0001) indicated that the prediction accuracy of the MaxEnt model was very high. The precipitation of the wettest month and precipitation of the driest month were the dominant factors affecting the distribution of this genus. Quantitative analysis performed in ArcToolbox were used to compare the distribution dynamic of the genus. An analysis based on the habitat stability of the population(N_(stab)), the area ratio of the distribution area between Current and other periods(N_a), and the degree of expansion or contraction(N_e) showed that Disanthus Maxim. underwent contraction coupled with evolution. The suitable distribution area of Disanthus Maxim. will likely alter depending on increases in greenhouse gas emissions in the future. The potential contractions in the distribution of Disanthus Maxim. range from thirty to sixty five percent. It is likely that the Disanthus Maxim. population found in the Wuyishan Mountains would be lost under RCP 8.5, in particular. Predicting the potential distribution areas of this genus in different periods would be helpful to improve our understanding of how the genus responds to climate change and the restriction mechanisms of environmental variables on the potential distribution of the species. This study could provide a theoretical reference point for the establishment of conservation measures for Disanthus Maxim. and help the study of the formation and evolution of the flora of East Asia.
引文
[1] Jackson S T,Overpeck J T.Responses of plant populations and communities to environmental changes of the late Quaternary.Paleobiology,2000,26(4):194- 220.
    [2] Bellard C,Bertelsmeier C,Leadley P,Thuiller W,Courchamp F.Impacts of climate change on the future of biodiversity.Ecology Letters,2012,15(4):365- 377.
    [3] Alsos I G,Ehrich D,Thuiller W,Eidesen P B,Tribsch A,Sch?nswetter P,Lagaye C,Taberlet P,Brochmann C.Genetic consequences of climate change for northern plants.Proceedings of the Royal Society B:Biological Sciences,2012,279(1735):2042- 2051.
    [4] Zhang Y B,Ma K P.Geographic distribution patterns and status assessment of threatened plants in China.Biodiversity and Conservation,2008,17(7):1783- 1789.
    [5] 乔慧捷,胡军华,黄继红.生态位模型的理论基础、发展方向与挑战.中国科学:生命科学,2013,43(11):915- 927.
    [6] 朱耿平,刘国卿,卜文俊,高玉葆.生态位模型的基本原理及其在生物多样性保护中的应用.生物多样性,2013,21(1):90- 98.
    [7] Phillips S J,Anderson R P,Schapire R E.Maximum entropy modeling of species geographic distributions.Ecological Modelling,2006,190(3/4):231- 259.
    [8] Ahmed S E,Mcinerny G,O′Hara K,Harper R,Salido L,Emmott S,Joppa L N.Scientists and software-surveying the species distribution modelling community.Diversity and Distributions,2015,21(3):258- 267.
    [9] Barbosa F G,Schneck F.Characteristics of the top-cited papers in species distribution predictive models.Ecological Modelling,2015,313:77- 83.
    [10] Vaz U L,Cunha H F,Nabout J C.Trends and biases in global scientific literature about ecological niche models.Brazilian Journal of Biology,2015,75(4 Suppl 1):S17-S24.
    [11] Kumar S,Stohlgren T J.Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia.Journal of Ecology and the Natural Environment,2009,1(4):94- 98.
    [12] Kumar S,Graham J,West A M,Evangelista P H.Using district-level occurrences in MaxEnt for predicting the invasion potential of an exotic insect pest in India.Computers and Electronics in Agriculture,2014,103:55- 62.
    [13] Khanum R,Mumtaz A S,Kumar S.Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling.Acta Oecologica,2013,49:23- 31.
    [14] Wang Y H,Jiang W M,Comes H P,Hu F S,Qiu Y X,Fu C X.Molecular phylogeography and ecological niche modelling of a widespread herbaceous climber,Tetrastigma hemsleyanum (Vitaceae):insights into Plio-Pleistocene range dynamics of evergreen forest in subtropical China.New Phytologist,2015,206(2):852- 867.
    [15] Yan H F,Zhang C Y,Wang F Y,Hu C M,Ge X J,Hao G.Population expanding with the phalanx model and lineages split by environmental heterogeneity:a case study of Primula obconica in subtropical China.PLoS One,2012,7(9):e41315.
    [16] Shatilova I,Mchedlishvili N.The genus Disanthus (Hamamelidaceae) from sarmatian and meotian deposits of Georgia.Bulletin of the Georgian National Academy of Sciences,2011,5(1):139- 142.
    [17] 李丽卡,李象钦,谢国文,李海生,郑毅胜,藤婕华,高锦伟.基于cpDNA片段探讨中-日间断分布双花木属植物的系统发育学.生物技术通报,2016,32(1):80- 87.
    [18] 高浦新,李美琼,周赛霞,刘洁,牛艳丽,杜娟,丁剑敏.濒危植物长柄双花木(Disanthus cercidifolius var.longipes)的资源分布及濒危现状.植物科学学报,2013,31(1):34- 41.
    [19] Okuhara H.New locality of Disanthus cercidifolius Max.The Journal of Geobotany,1967,15(4):102- 103.
    [20] 潘开玉,杨亲二.双花木属和壳菜果属(金缕梅科)的核型研究.植物分类学报,1994,32(3):235- 239.
    [21] Li J H,Bogle A L,Klein A S.Phylogenetic relationships of the Hamamelidaceae inferred from sequences of internal transcribed spacers (ITS) of nuclear ribosomal DNA.American Journal of Botany,1999,86(7):1027- 1037.
    [22] Yu Y,Fan Q,Shen R J,Guo W,Jin J H,Cui D F,Liao W B.Genetic variability and population structure of Disanthus cercidifolius subsp.longipes (Hamamelidaceae) based on AFLP analysis.PLoS One,2014,9(9):e107769.
    [23] 张嘉茗,廖育艺,谢国文,刘萍萍,谭飞芬,林志纲,谢晓泽.国家珍稀濒危植物长柄双花木的种群特征.热带生物学报,2013,4(1):74- 80.
    [24] Peterson A T.Uses and requirements of ecological niche models and related distributional models.Biodiversity Informatics,2006,3:59- 72.
    [25] 胡秀,吴福川,郭微,刘念.基于MaxEnt生态学模型的檀香在中国的潜在种植区预测.林业科学,2014,50(5):27- 33.
    [26] Jiménez-Valverde A,Lobo J M.Threshold criteria for conversion of probability of species presence to either-or presence-absence.Acta Oecologica,2007,31(3):361- 369.
    [27] Jiang X L,Deng M,Li Y.Evolutionary history of subtropical evergreen broad-leaved forest in Yunnan Plateau and adjacent areas:an insight from Quercus schottkyana (Fagaceae).Tree Genetics & Genomes,2016,12:104.
    [28] 管毕财,陈微,刘想,蔡奇英,刘以珍,葛刚.四照花物种分布格局模拟及冰期避难所推测.西北植物学报,2016,36(12):2541- 2547.
    [29] 高文强,王小菲,江泽平,刘建锋.气候变化下栓皮栎潜在地理分布格局及其主导气候因子.生态学报,2016,36(14):4475- 4484.
    [30] 刘芙蓉,罗建勋,杨马进.山桐子的地理分布及其潜在适宜栽培区区划.林业科学研究,2017,30(6):1028- 1033.
    [31] 房锋,张朝贤,黄红娟,李燕,陈景超,杨龙,魏守辉.基于MaxEnt的麦田恶性杂草节节麦的潜在分布区预测.草业学报,2013,22(2):62- 70.
    [32] 陈新美,雷渊才,张雄清,贾宏炎.样本量对MaxEnt模型预测物种分布精度和稳定性的影响.林业科学,2012,48(1):53- 59.
    [33] Qiao H J,Peterson A T,Ji L Q,Hu JH.Using data from related species to overcome spatial sampling bias and associated limitations in ecological niche modelling.Methods in Ecology and Evolution,2017,8:1804- 1812.
    [34] 钟秀丽,林而达.气候变化对我国自然生态系统影响的研究综述.生态学杂志,2000,19(5):62- 66.
    [35] 应凌霄,刘晔,陈绍田,沈泽昊.气候变化情景下基于最大熵模型的中国西南地区清香木潜在分布格局模拟.生物多样性,2016,24(4):453- 461.
    [36] 李颖,姜小龙,邓敏,李谦盛.乌冈栎的潜在分布模拟及分析.生态学杂志,2017,36(10):2971- 2978.
    [37] Kharin V V,Zwiers F W,Zhang X,Wehner M.Changes in temperature and precipitation extremes in the CMIP5 ensemble.Climatic Change,2013,119(2):345- 357.
    [38] Borcard D,Legendre P,Drapeau P.Partialling out the spatial component of ecological variation.Ecology,1992,73(3):1045- 1055.
    [39] Qian H,Ricklefs R E.Palaeovegetation (communications arising):diversity of temperate plants in East Asia.Nature,2001,413(6852):130.
    [40] 李晓红,曾建军,周兵.特有濒危植物长柄双花木濒危原因及其保护对策.井冈山大学学报:自然科学版,2013,34(6):100- 106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700