用户名: 密码: 验证码:
Anisotropic Transport on Monolayer and Multilayer Phosphorene in the Presence of an Electric Field
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Anisotropic Transport on Monolayer and Multilayer Phosphorene in the Presence of an Electric Field
  • 作者:谷风 ; 程芳
  • 英文作者:Gufeng Fu;Fang Cheng;Department of Physics and Electronic Science, Changsha University of Science and Technology;
  • 中文刊名:Chinese Physics Letters
  • 英文刊名:中国物理快报(英文版)
  • 机构:Department of Physics and Electronic Science, Changsha University of Science and Technology;
  • 出版日期:2019-04-23
  • 出版单位:Chinese Physics Letters
  • 年:2019
  • 期:05
  • 基金:Supported by the National Natural Science Foundation of China under Grant No 11374002;; the Scientific Research Fund of Hunan Provincial Education Department under Grant No 17A001;; the Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering of Changsha University of Science and Technology
  • 语种:英文;
  • 页:71-74
  • 页数:4
  • CN:11-1959/O4
  • ISSN:0256-307X
  • 分类号:TB33
摘要
We demonstrate theoretically the anisotropic quantum transport of electrons through an electric field on monolayer and multilayer phosphorene. Using the long-wavelength Hamiltonian with continuum approximation, we find that the transmission probability for transport through an electric field is an oscillating function of incident angle, electric field intensity, as well as the incident energy of electrons. By tuning the electric field intensity and incident angle, the channels can be transited from opaque to transparent. The conductance through the quantum waveguides depends sensitively on the transport direction because of the anisotropic effective mass, and the anisotropy of the conductance can be tuned by the electric field intensity and the number of layers. These behaviors provide us an efficient way to control the transport of phosphorene-based microstructures.
        We demonstrate theoretically the anisotropic quantum transport of electrons through an electric field on monolayer and multilayer phosphorene. Using the long-wavelength Hamiltonian with continuum approximation, we find that the transmission probability for transport through an electric field is an oscillating function of incident angle, electric field intensity, as well as the incident energy of electrons. By tuning the electric field intensity and incident angle, the channels can be transited from opaque to transparent. The conductance through the quantum waveguides depends sensitively on the transport direction because of the anisotropic effective mass, and the anisotropy of the conductance can be tuned by the electric field intensity and the number of layers. These behaviors provide us an efficient way to control the transport of phosphorene-based microstructures.
引文
[1]Novoselov K S,Geim A K,Morozov S V,Jiang D,Katsnelson M I,Grigorieva I V,Dubonos S V and Firsov A A 2005Nature 438 197
    [2]Novoselov K S,Geim A K,Morozov S V,Jiang D,Zhang Y,Dubonos S V,Grigorieva I V and Firsov A A 2004 Science306 666
    [3]Han C Q,Yao M Y,Bai X X,Miao L,Zhu F,Guan D D,Wang S,Gao C L,Liu C,Qian D,Liu Y and Jia J 2014Phys.Rev.B 90 085101
    [4]Lu W,Nan H,Hong J,Chen Y,Zhu C,Liang Z,Ma X,Ni Z,Jin C and Zhang Z 2014 Nano Res.7 853
    [5]Brown A and Rundqvist S 1965 Acta Crystallogr.19 684
    [6]Slater J C,Koster G F and Wood J H 1962 Phys.Rev.1261307
    [7]Cartz L,Srinivasa S R,Riedner R J,Jorgensen J D and Worlton T G J 1979 Chem.Phys.71 49010
    [8]Ling X,Wang H,Huang S,Xia F and Dresselhaus M S 2015Proc.Natl.Acad.Sci.USA 112 4523
    [9]Maity A,Singh A,Sen P et al 2016 Phys.Rev.B 94 075422
    [10]Rodin A S,Carvalho A and Castro Neto A H 2014 Phys.Rev.Lett.112 176801
    [11]Cai K,Liu L,Shi J and Qin Q H 2017 Mater.Des.121 406
    [12]Li X J,Yu J H,Luo K,Wu Z H and Yang W 2018 Nanotechnology 29 174001
    [13]Liu H,Du Y,Deng Y and Ye P D 2015 Chem.Soc.Rev.44 2732
    [14]Churchill H O and Jarillo-Herrero P 2014 Nat.Nanotechnol.9 330
    [15]Reich E S 2014 Nature 506 19
    [16]Castellanos-Gomez A,Vicarelli L,Prada E,Isl,J O,Narasimha-Acharya K L,Blanter S I,Groenendijk D J,Buscema M,Steele G A,Alvarez J V,Zandbergen H W,Palacios J J and van der Zant H S J 2014 2D Mater.1025001
    [17]Buscema M,Groenendijk D J,Blanter S I,Steele G A,van der Zant H S J and Castellanos-Gomez A 2014 Nano Lett.14 3347
    [18]Long M,Gao A,Wang P,Xia H,Ott C,Pan C,Fu Y,Liu E,Chen X,Lu W,Nilges T,Xu J,Wang X,Hu W and Miao F 2017 Sci.Adv.3 e1700589
    [19]Li L,Yu Y,Ye G J,Ge Q,Ou X,Wu H,Feng D,Chen XH and Zhang Y 2014 Nat.Nanotechnol.9 372
    [20]Liu H,Neal A T,Zhu Z,Luo Z,Xu X,Tománek D and Ye P D 2014 ACS Nano 8 4033
    [21]Fei R and Yang L 2014 Nano Lett.14 2884
    [22]Hu S,Xiang J,Lv M,Zhang J,Zhao H,Li C,Chen G F,Wang W H and Sun P J 2018 Phys.Rev.B 97 045209
    [23]Wang X,Jones A M,Seyler K L,Tran V,Jia Y,Zhao H,Wang H,Yang L,Xu X and Xia F 2015 Nat.Nanotechnol.10 517
    [24]Qin Z P,Hai T,Xie G Q,Ma J G,Yuan P,Qian L J,Li L,Zhao L M and Shen D Y 2018 Opt.Express 26 8224
    [25]Elahi M,Khalij K,Tabatabaei S M,Pourfath M and Asgari R 2015 Phys.Rev.B 91 115412
    [26]Cheng F and Yuan Y 2017 AIP Adv.7 075310
    [27]Ezawa M 2014 New J.Phys.16 115004
    [28]Rudenko A N,Yuan S J and Katsnelson M I 2015 Phys.Rev.B 92 085419
    [29]Liu Y P,Qiu Z Z,Carvalho A,Bao Y,Xu H,Tan S J R,Liu W,Castro Neto A H,Loh K P and Lu J 2017 Nano Lett.17 1970
    [30]Cheng F and He B 2016 Chin.Phys.Lett.33 057301

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700