用户名: 密码: 验证码:
人工湿地基质去除污染物的作用机制研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advance in researches on mechanism of pollutants removal conducted through substrates of constructed wetland
  • 作者:张镭 ; 刘福兴 ; 蒋媛 ; 王俊力 ; 乔红霞 ; 付子轼
  • 英文作者:ZHANG Lei;LIU Fu-xing;JIANG Yuan;WANG Jun-li;QIAO Hong-xia;FU Zi-shi;Eco-environmental Protection Research Institute,Shanghai Academy of Agricultural Sciences;Shanghai Engineering Research Centre of Low-carbon Agriculture(SERCLA);Wuxi Hengcheng Water Conservancy Engineering Construction Co.Ltd.;
  • 关键词:人工湿地 ; 基质 ; 水处理 ; 机制 ; 污染物
  • 英文关键词:Constructed wetland;;Substrate;;Water treatment;;Mechanism;;Pollutants
  • 中文刊名:上海农业学报
  • 英文刊名:Acta Agriculturae Shanghai
  • 机构:上海市农业科学院生态环境保护研究所;上海低碳农业工程技术研究中心;无锡恒诚水利工程建设有限公司;
  • 出版日期:2019-03-30
  • 出版单位:上海农业学报
  • 年:2019
  • 期:02
  • 基金:国家水体污染控制与治理科技重大专项(2017ZX07203-005);; 上海市农业科学院学科领域建设专项(HCY2019-01)
  • 语种:中文;
  • 页:126-131
  • 页数:6
  • CN:31-1405/S
  • ISSN:1000-3924
  • 分类号:X703
摘要
人工湿地因其基建投资少、运行管理简单、生态效益高、降解污染物能力强和适用范围广等优点在水处理领域得到广泛应用。湿地基质的材料特性及配置方式对湿地的运行效果产生重要影响,然而目前对于基质去除污染物的作用机制尚未见归纳总结。通过综述近些年人工湿地基质方面的相关研究进展,从物化反应及生物化学反应等多角度对基质去除污染物的作用机制进行了探讨,并总结了非基质类外源汇入颗粒对湿地功能的影响,最后对人工湿地基质研究领域今后的发展方向做出展望,以期对未来湿地科学的研究和工程设计提供理论支持。
        Constructed wetlands are widely used in water treatment due to their low capital investment,the convenience of operation and management,its ecological benefits,efficiency of pollutants removal and its wide applicability in many fields. The properties and configuration of substrates are critical to determine the operation effectiveness of wetlands,but the mechanism of contaminants removal by substrates has not yet been summarized so far. This paper reviews the advance in researches on substrates applied in constructed wetlands in recent years,and emphatically discusses the mechanism of pollutants degradation from physical,chemical and biochemical reactions. Additionally,the influences towards the function of wetland substrates caused by the input of non-substrate granules are examined. Finally,the prospect of future development on wetland substrates is provided as possible theoretical support for wetland science and engineering design in future.
引文
[1]宿军勇.湿地组合工艺处理污水处理厂尾水的性能研究[D].济南:山东大学,2017.
    [2]NGUYEN X C,CHANG S W,NGUYEN T L,et al. A hybrid constructed wetland for organic-material and nutrient removal from sewage:Process performance and multi-kinetic models[J]. Journal of Environmental Management,2018,222:378-384.
    [3]LI X,DING A.,ZHENG L,et al. Relationship between design parameters and removal efficiency for constructed wetlands in China[J].Ecological Engineering,2018,123:135-140.
    [4]黄锦楼,陈琴,许连煌.人工湿地在应用中存在的问题及解决措施[J].环境科学,2013,34(1):401-408.
    [5]KASAK K,TRUU J,OSTONEN I,et al. Biochar enhances plant growth and nutrient removal in horizontal subsurface flow constructed wetlands[J]. Science of The Total Environment,2018,639:67-74.
    [6]YANG Y,ZHAO Y,LIU R,et al. Global development of various emerged substrates utilized in constructed wetlands[J]. Bioresource Technology,2018,261:441-452.
    [7]LISTOSZ A,KOWALCZYKsubsurface flow constructed wetland during long-term operation[J]. Ecological Engineering,2018,122:76-83.
    [8]MENDES L R D,TONDERSKI K,IVERSEN B V,et al. Phosphorus retention in surface-flow constructed wetlands targeting agricultural drainage water[J]. Ecological Engineering,2018,120:94-103.
    [9]DI LUCA G A,MAINE M A,MUFARREGE,M M,et al. Phosphorus distribution pattern in sediments of natural and constructed wetlands[J].Ecological Engineering,2017,108:227-233.
    [10]CAO Q,WANG H,CHEN X,et al. Composition and distribution of microbial communities in natural river wetlands and corresponding constructed wetlands[J]. Ecological Engineering,2017,98:40-48.
    [11]HUANG X,ZHENG J,LIU C,et al. Removal of antibiotics and resistance genes from swine wastewater using vertical flow constructed wetlands:Effect of hydraulic flow direction and substrate type[J]. Chemical Engineering Journal,2017,308:692-699.
    [12]任珺,汪孔泉,杨欣,等.人工湿地基质配制对含Pb废水的处理效果研究[J].生态环境学报,2018,27(6):1138-1144.
    [13] CHEN J,WEI X D,LIU Y S,et al. Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands:Optimization of wetland substrates and hydraulic loading[J]. Science of The Total Environment,2016,565:240-248.
    [14]WANG Z,DONG J,LIU L,et al. Screening of phosphate-removing substrates for use in constructed wetlands treating swine wastewater[J].Ecological Engineering,2013,54:57-65.
    [15]PARK J H,WANG J J,KIM S H,et al. Phosphate removal in constructed wetland with rapid cooled basic oxygen furnace slag[J]. Chemical Engineering Journal,2017,327:713-724.
    [16]WALASZEK M,BOIS P,LAURENT J,et al. Micropollutants removal and storage efficiencies in urban stormwater constructed wetland[J].Science of The Total Environment,2018,645:854-864.
    [17]赵林丽,邵学新,吴明,等.人工湿地不同基质和粒径对污水净化效果的比较[J].环境科学,2018,39(9):4236-4241.
    [18]赵东源,张生,赵胜男,等.人工湿地基质组合去除氨氮方案筛选及影响因素的动力学分析[J].水资源与水工程学报,2018,29(4):121-126.
    [19]VERA I,ARAYA F,ANDRS E,et al. Enhanced phosphorus removal from sewage in mesocosm-scale constructed wetland using zeolite as medium and artificial aeration[J]. Environmental technology,2014,35(13/14/15/16):1639-1649.
    [20]ZHU W L,CUI L H,OUYANG Y,et al. Kinetic Adsorption of Ammonium Nitrogen by Substrate Materials for Constructed Wetlands[J].Pedosphere,2011,21(4):454-463.
    [21]朱加宾,李冰,侯诒然,等.人工湿地不同植物根系及基质重金属富集特征及其与环境因子相关性[J].上海海洋大学学报,2018,27(4):531-542.
    [22] KANG W,CHAI H,XIANG Y,et al. Assessment of low concentration wastewater treatment operations with dewatered alum sludge-based sequencing batch constructed wetland system[J]. Scientific reports,2017,7(1):17497.
    [23]LIU R,ZHAO Y,SIBILLE C,et al. Evaluation of natural organic matter release from alum sludge reuse in wastewater treatment and its role in P adsorption[J]. Chemical Engineering Journal,2016,302:120-127.
    [24]PARK J H,KIM S H,DELAUNE R D,et al. Enhancement of phosphorus removal with near-neutral pH utilizing steel and ferronickel slags for application of constructed wetlands[J]. Ecological Engineering,2016,95:612-621.
    [25]WANG R,TAI Y,WAN X,et al. Enhanced removal of Microcystis bloom and microcystin-LR using microcosm constructed wetlands with bioaugmentation of degrading bacteria[J]. Chemosphere,2018,210:29-37.
    [26]SUKIAS J P S,PARK J B K,STOTT R,et al. Quantifying treatment system resilience to shock loadings in constructed wetlands and denitrification bioreactors[J]. Water Research,2018,139:450-461.
    [27]XING W,LI D,LI J,et al. Nitrate removal and microbial analysis by combined micro-electrolysis and autotrophic denitrification[J]. Bioresource Technology,2016,211:240-247.
    [28]黄磊,梁银坤,梁岩,等.生物炭添加对湿地植物菖蒲根系通气组织和根系泌氧的影响[J].环境科学,2019,40(3):1280-1286.
    [29]黄磊,陈玉成,赵亚琦,等.生物炭添加对湿地植物生长及氧化应激响应的影响[J].环境科学,2018,39(6):2904-2910.
    [30]刘慎坦,王国芳,谢祥峰,等.不同基质对人工湿地脱氮效果和硝化及反硝化细菌分布的影响[J].东南大学学报(自然科学版),2011,41(2):400-405.
    [31]GE Z,WEI D,ZHANG J,et al. Natural pyrite to enhance simultaneous long-term nitrogen and phosphorus removal in constructed wetland:Three years of pilot study[J]. Water Research,2019,148:153-161.
    [32]KIZITO S,LV T,WU S,et al. Treatment of anaerobic digested effluent in biochar-packed vertical flow constructed wetland columns:Role of media and tidal operation[J]. Science of The Total Environment,2017,592:197-205.
    [33]CAO W,WANG Y,SUN L,et al. Removal of nitrogenous compounds from polluted river water by floating constructed wetlands using rice straw and ceramsite as substrates under low temperature conditions[J]. Ecological Engineering,2016,88:77-81.
    [34]SAEED T,SUN G. A lab-scale study of constructed wetlands with sugarcane bagasse and sand media for the treatment of textile wastewater[J].Bioresource Technology,2013,128:438-447.
    [35]ZHANG L,ZHANG C,HU C,et al. Sulfur-based mixotrophic denitrification corresponding to different electron donors and microbial profiling in anoxic fluidized-bed membrane bioreactors[J]. Water Research,2015,85:422-431.
    [36]XIE H,YANG Y,LIU J,et al. Enhanced triclosan and nutrient removal performance in vertical up-flow constructed wetlands with manganese oxides[J]. Water Research,2018,143:457-466.
    [37]WEN Z D,WU W M,REN N Q,et al. Synergistic effect using vermiculite as media with a bacterial biofilm of Arthrobacter sp. for biodegradation of di-(2-ethylhexyl)phthalate[J]. Journal of Hazardous Materials,2016,304:118-125.
    [38]LIANG J,BAI Y,HU C,et al. Cooperative Mn(II)oxidation between two bacterial strains in an aquatic environment[J]. Water Research,2016,89:252-260.
    [39]HUANG S,JAFFP R. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions[J]. Biogeosciences,2015,12(3):769-779.
    [40]SHUAI W,JAFFP R. Anaerobic ammonium oxidation coupled to iron reduction in constructed wetland mesocosms[J]. Science of The Total Environment,2019,648:984-992.
    [41]LI X F,HOU L J,LIU M,et al. Evidence of Nitrogen Loss from Anaerobic Ammonium Oxidation Coupled with Ferric Iron Reduction in an Intertidal Wetland[J]. Environmental Science&Technology,2015,49(19):11560-11567.
    [42]AUVINEN H,SEPLVEDA V V,ROUSSEAU D P L,et al. Substrate-and plant-mediated removal of citrate-coated silver nanoparticles in constructed wetlands[J]. Environ Sci Pollut Res Int,2016,23(21):1-7.
    [43]BAO S,LIANG L,HUANG J,et al. Removal and fate of silver nanoparticles in lab-scale vertical flow constructed wetland[J]. Chemosphere,2019,214:203-209.
    [44]HUANG J,CAO C,YAN C,et al. Impacts of silver nanoparticles on the nutrient removal and functional bacterial community in vertical subsurface flow constructed wetlands[J]. Bioresource Technology,2017,243:1216-1226.
    [45]JOSHI N,NGWENYA B T,FRENCH C E. Enhanced resistance to nanoparticle toxicity is conferred by overproduction of extracellular polymeric substances[J]. Journal of Hazardous Materials,2012,241/242:363-370.
    [46]HUANG J,YAN C N,CAO C,et al. Performance evaluation of Iris pseudacorus constructed wetland for advanced wastewater treatment under long-term exposure to nanosilver[J]. Ecological Engineering,2018,116:188-195.
    [47]LOWRY G V,ESPINASSE B P,BADIREDDY A R,et al. Long-term transformation and fate of manufactured ag nanoparticles in a simulated large scale freshwater emergent wetland[J]. Environmental Science&Technology,2012,46(13):7027.
    [48]ZHANG X,ZHOU Y,XU T,et al. Toxic effects of CuO,ZnO and Ti O2 nanoparticles in environmental concentration on the nitrogen removal,microbial activity and community of Anammox process[J]. Chemical Engineering Journal,2018,332:42-48.
    [49]YANG X,CHEN Y,LIU X,et al. Influence of titanium dioxide nanoparticles on functionalities of constructed wetlands for wastewater treatment[J]. Chemical Engineering Journal,2018,352:655-663.
    [50]WANG S,LI Z,GAO M,et al. Long-term effects of cupric oxide nanoparticles(CuO NPs)on the performance,microbial community and enzymatic activity of activated sludge in a sequencing batch reactor[J]. Journal of Environmental Management,2017,187:330-339.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700