用户名: 密码: 验证码:
外源硅添加对模拟干旱胁迫下垂穗披碱草苗期根系形态的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of exogenous silicon on root morphology of Elymus nutans seedlings under simulant drought stress
  • 作者:杨智 ; 陈仕勇 ; 周青平 ; 汪辉 ; 陈有军 ; 胡健
  • 英文作者:YANG Zhi;CHEN Shiyong;ZHOU Qingping;WANG Hui;CHEN Youjun;HU Jian;College of Life Science and Technology, Southwest Minzu University;Academy of the Qinghai-Tibetan plateau, Southwest Minzu University;
  • 关键词:垂穗披碱草 ; PEG-6000 ; 干旱胁迫 ; 硅添加 ; 根系形态
  • 英文关键词:Elymus nutans;;PEG-6000;;drought stress;;silicon addition;;root morphology
  • 中文刊名:草业科学
  • 英文刊名:Pratacultural Science
  • 机构:西南民族大学生命与技术学院;西南民族大学青藏高原研究院;
  • 出版日期:2019-05-15
  • 出版单位:草业科学
  • 年:2019
  • 期:05
  • 基金:国家重点研发计划课题(2017YFC0504806);; 西南民族大学研究生创新型项目(CX2018SZ68);; 国家牧草产业技术体系青藏高原牧草育种岗位(CARS34);; 青藏高原生态畜牧业协同创新中心开放基金(QZGYXT04)
  • 语种:中文;
  • 页:190-197
  • 页数:8
  • CN:62-1069/S
  • ISSN:1001-0629
  • 分类号:S543.9
摘要
为了探讨外源硅添加对干旱胁迫下垂穗披碱草(Elymus nutans)苗期根系形态的影响,本研究采用聚乙二醇(PEG-6000)模拟干旱胁迫的方法,分析添加不同浓度硅对干旱胁迫下垂穗披碱草苗期根系总根长、表面积、体积、平均直径、分枝数等形态指标的影响。结果表明:15%PEG模拟干旱胁迫处理7 d后,随着硅浓度的增大幼苗的根系生物量、总根长、表面积、体积、平均直径、分枝数及根尖数呈现上升趋势;处理21 d后随着硅浓度的增大,以上指标先上升后下降,当硅浓度为0.5 mmol·L~(–1)时效果最好。同时,硅添加后的幼苗的根系指标在R1(0~0.5 mm)直径范围显著升高(P <0.05)。这些结果表明,外源硅添加缓解了干旱胁迫对垂穗披碱草幼苗根系的危害,细根分化能力明显加强;添加外源硅可使垂穗披碱草幼苗通过调整根系形态来适应干旱的环境。本研究为垂穗披碱草的抗旱性研究及其生产利用等提供了重要的参考。
        In order to explore the effect of exogenous silicon(Si) on the root morphology of Elymus nutans seedlings under drought stress, the total root length, root surface area, root volume, average root diameter, and root branch number of seedlings were determined by adding exogenous Si under polyethylene glycol(PEG-6000) simulated drought conditions. The results showed that the total length, root biomass, root surface area, root volume, average root diameter, branch root numbers,and root tip numbers of seedlings were increased with increasing concentrations of exogenous Si when treated with 15%PEG for 7 days. Nevertheless, these indices first increased and then decreased under the condition of 15% PEG for 21 days as the concentration of Si increased, and 0.5 mmol·L~(–1) was found to be the best concentration for Si. Meanwhile, the root index of seedlings with the diameter range of R1(0~0.5 mm) increased significantly(P < 0.05) with Si addition. These results indicate that Si addition enhanced the ability of fine root differentiation and alleviated the damage due to drought stress to the root system of E. nutans seedlings by adjusting the root morphology of seedlings to adapt to the arid environment. This study provides an important reference for drought resistance research and the production and utilization of E. nutans.
引文
[1] RAVEN J A. Cycling silicon:The role of accumulation in plants. New Phytologist, 2003, 158(3):419-421.
    [2] GREGORY P J. Plant Roots:Growth, Activity and Interaction with Soils. Oxford:Blackwell Publishing Ltd., 2006:318-425.
    [3] LYNCH J P. Root phenes for enhanced soil exploration and phosphorus acquisition:Tools for future crops. Plant Physiology, 2011,156(3):1041-1049.
    [4] YANG J, ZHANG J, WANG Z, XU G, ZHU Q. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit duiring grain filling. Plant Physiology, 2004, 135(3):1621-1629.
    [5] YAMAUCHI A, PARDALES J R, KONO Y. Root system structure and its relation to stress tolerance. Japanese Journal of Soil Science and Plant Nutrition, 1994, 3:211-233.
    [6] TSAKALDIMI M, TSITSONI T, GANATSAS P, ZAGAS T. A comparison of root architecture and shoot morphology between naturally regenerated and container-grown seedlings of Quercus ilex. Plant and Soil, 2009, 324(1/2):103.
    [7]赵国靖,徐伟洲,郭亚力,吴爱姣,陈吉,徐炳成.达乌里胡枝子根系形态特征对土壤水分变化的响应.应用与环境生物学报,2014,20(3):484-490.ZHAO G J, XU W Z, GUO Y L, WU A J, CHEN J, XU B C. Responses of root system of lespedeza davurical to soil water change.Chinese Journal of Applied and Environmental Biology, 2014, 20(3):484-490.
    [8]种培芳,李航逸,李毅.荒漠植物红砂根系对干旱胁迫的生理响应.草业学报,2015, 24(1):72-80.ZHONG P F, LI H Y, Li Y. Physiological responses of seedling roots of the desert plant Reaumuria soongoricato drought stress.Acta Prataculturae Sinica, 2015, 24(1):72-80.
    [9] SOMMERM M, KUZYAKOV Y, BREUER J. Silicon poolsand fluxesin soilsand landscapes-areview. Journal of Plant Nutrition and Soil Science, 2006, 169(3):310-329.
    [10] CURRIE H A, PERRY C C. Silica in plants:Biological, biochemical and chemical studies. Annals of Botany, 2007, 100(7):1383-1389.
    [11] HELAY M N, EL-HOSEINY H, EL-SHEERY N I, RASTOGI A, KALAJI H M. Regulation and physiological role of silicon in alleviating drought stress of mango. Plant Physiology and Biochemistry, 2017, 118:31-44.
    [12] ZHANG W, XIE Z, WANG L, LI M, LANG D, ZHANG X. Silicon alleviates salt and drought stress of Glycyrrhiza uralensis seedling by altering antioxidant metabolism and osmotic adjustment. Journal of Plant Research, 2017, 130(3):611-624.
    [13] LIN H, FANG C, LI Y, LIN W, HE J, LIN R, LIN W. Cadmium-stress mitigation through gene expression of rice and silicon addition. Plant Growth Regulation, 2017, 81(1):91-101.
    [14] TRIPATHIA D K, SINGHB V S, SINGHC V P, PRASADD S M, DUBEYA N K, CHAUHANB D K. Silicon nanoparticlesmore effectively alleviated UV-B stress than silicon in wheat(Triticum aestivum)seedlings. Plant Physiology and Biochemistry, 2017,110:70-81.
    [15] MOSTOWFIZADEH-GHALAMFARSA R, HUSSAINI K, GHASEMI-FASAEI R. Activity of two silicon salts incontrolling the pistachio gummosis-inducing pathogen, Phytophthora pistaciae. Australas Plant Pathology, 2017, 46(4):323-332.
    [16] DORNELES K R, DALLAGNOL L J, PAZDIORA P C, FABRICIO A, RODRIGUES F A, DEUNER S. Silicon potentiates biochemical defense responses of wheat against tan spot. Physiological and Molecular Plant Pathology, 2017, 97:69-78.
    [17]陈伟,蔡昆争,陈基宁.硅和干旱胁迫对水稻叶片光合特性和矿质养分吸收的影响.生态学报,2012, 32(8):2620-2628.CHEN W, CAI K Z, CHEN J N. Effects of silicon application and drought stress on photosynthetic traits and mineral nutrient absorption of rice leaves. Acta Ecologica Sinica, 2012, 32(8):2620-2628.
    [18]邵长泉.硅肥对糯玉米根系生长状况、产量及品质的影响.长江蔬菜,2007(5):50-51.SHA C Q. Effects of silicon fertilizer on root system and yield and quality of waxy corn. Journal of Changjiang Vegetables,2007(5):50-51.
    [19]朱佳,梁永超,丁燕芳,李兆君.硅对低温胁迫下冬小麦幼苗光合作用及相关生理特性的影响.中国农业科学,2006, 39(9):1780-1788.ZHU J, LIANG Y C, DING Y F, LI Z J. Effect of silicon on photosynthesis and its related physiological parameters in two winter wheat cultivars under cold stress. Scientia Agricultura Sinica, 2006, 39(9):1780-1788.
    [20]刘慧霞,郭正刚,周雪荣,郭兴华,邹文辉,王爱国.硅对紫花苜蓿根系生长的影响.中国草地学报,2009, 31(1):28-31.LIU H X, GUO Z G, ZHOU X R, GUO X H, ZOU W H, WANG A G. Effects of silicon on root growth of lucerne. Chinese Journal of Grassland,2009, 31(1):28-31.
    [21] HAMEED A, SHEIKH M A, JAMIL A, BASRA S M A. Seed priming with sodium silicate enhances seed germination and seedling growth in wheat(Triticum aestivum L.)under water deficit stress induced by polyethylene glycol. Pakistan Journal of Life&Social Sciences, 2013, 11(1):19-24.
    [22] CHEN W, YAO X Q, CAI K Z, CHEN J N. Silicon alleviates drought stress of rice plants by improving plant water status,photosynthesis and mineral nutrient absorption. Biological Trace Element Research, 2011, 142(1):67-76.
    [23]王晨,左昆,柴琦,邸利会.干旱条件下硅对草地早熟禾生长初期的影响.草业科学,2008, 25(7):114-117.WANG C, ZUO K, CHAI Q, DI L H. Effect of silicon fertilizer on early kentucky bluegrass growth under drought stress.Pratacultural Science, 2008, 25(7):114-117.
    [24]刘辉.水稻根系高效吸收硅素的生理机制研究.郑州:河南农业大学硕士学位论文,2008.LIU H. The physiological mechanism of silicon efficient uptake on rice root. Master Thesis. Zhengzhou:Henan Agricultural University, 2008.
    [25]曲继松,张丽娟,冯海萍,杨冬艳.根域限制对柠条基质黄瓜幼苗生长及气体交换参数的影响.江苏农业学报,2015,31(1):130-133.QU J S, ZHANG L J, FENG H P, YANG D Y. Effect of root-zone volume on the growth and gas exchange parameters of cucumber seedlings in caragana substrates. Jiangsu Journal of Agricultural Sciences, 2015, 31(1):130-133.
    [26] HINSINGER P, PLASSARD C. Acquisition of phosphorus and other poorly mobile nutrients by roots. Where do plant nutrition models fail? Plant&Soil, 2011, 348(1/2):29-61.
    [27] LYNCH J P, WOJCIECHOWSKI T. Opportunities and challenges in the subsoil:Pathways to deeper rooted crops. Journal of Experimental Botany, 2015, 66(8):2199-2210.
    [28]余群.干旱胁迫下硅肥对草地早熟禾苗期生长发育的影响.兰州:兰州大学硕士学位论文,2014.YU Q. The effects of silicon on growth and development of kentucky bluegrass seedlings under drought stress. Master Thesis.Lanzhou:Lanzhou University, 2014.
    [29]苏以荣.硅缓解亚铁对水稻根系毒害的研究.生态环境学报,1993(3):171-174.SU Y R. Effect of si on alleviation of Fe2+toxicity to rice roots. Ecology and Environmental Sciences, 1993(3):171-174.
    [30]宋锐,林选栋,林丽果,宋浩然,刘慧霞.不同盐浓度下硅对高羊茅根系特征的影响.草业科学,2017, 34(6):1188-1193.SONG R, LIN X D, LIN L G, SONG H R, LIU H X. Effect of silicon supply on root features of tall fescue in different salt concentrations. Pratacultural Science, 2017, 34(6):1188-1193.
    [31] ZARGAR S M, MAHAJAN R, BHAT J A, NAZIR M, DESHMUKH R. Role of silicon in plant stress tolerance:Opportunities to achieve a sustainable cropping system. 3 Biotech, 2019, 9(3):73-85.
    [32] RIZWAN M, ALI S, IBRAHIM M, FARID M, BHARWANA S A, ZIA-UR-REHMAN M, ADREES M. Mechanisms of siliconmediated alleviation of drought and salt stress in plants:A review. Environmental Science and Pollution Research, 2015, 22(20):15416-15431.
    [33] MARIE L, JEAN-FRANCOIS H, STANLEY L, GEA G. Silicon and Plants:Current knowledge and technological perspectives.Frontiers in Plant Science, 2017, 8:411-418.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700