用户名: 密码: 验证码:
不同光照强度下仙掌藻(Halimeda opuntia)对海洋酸化的生理响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The physiological performance of the calcifying green macroalga Halimeda opuntia in response to ocean acidification with irradiance variability
  • 作者:韦章良 ; 莫嘉豪 ; 胡群菊 ; 严锐飞 ; 龙超 ; 丁德文 ; 杨芳芳 ; 龙丽娟
  • 英文作者:WEI Zhang-liang;MO Jia-hao;HU Qun-ju;YAN Rui-fei;LONG Chao;DING De-wen;YANG Fang-fang;LONG Li-juan;Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences;University of Chinese Academy of Sciences;Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences;College of LifeSciences and Oceanography, Shenzhen University;First Institute of Oceanography, Ministry of Natural Resources;
  • 关键词:仙掌藻 ; 海水酸化 ; 光照变化 ; 光合作用 ; 钙化作用 ; 生理特征
  • 英文关键词:Halimeda;;ocean acidification;;irradiance variability;;photosynthesis;;calcification;;physiological performance
  • 中文刊名:海洋通报
  • 英文刊名:Marine Science Bulletin
  • 机构:中国科学院南海海洋研究所中国科学院热带海洋生物资源与生态重点实验室;中国科学院大学;中国科学院海南热带海洋生物实验站;深圳大学生命与海洋科学学院;自然资源部第一海洋研究所;
  • 出版日期:2019-10-15
  • 出版单位:海洋通报
  • 年:2019
  • 期:05
  • 基金:广州市科技计划项目(201707010174);; 中国科学院战略性先导科技专项(A类)(XDA13020203);; 国家自然科学基金(41806145)
  • 语种:中文;
  • 页:97-107
  • 页数:11
  • CN:12-1076/P
  • ISSN:1001-6392
  • 分类号:Q178.1
摘要
为探讨海洋酸化和光照强度变化对海洋钙化生物的影响,本文选用广泛分布在热带珊瑚礁区的大型钙化海藻仙掌藻(Halimeda opuntia)为研究对象,在室内通过CO2加富(pH=7.50、7.80和8.10)和调控光照强度(30和180μmol photons m2·s-1)的方式,探究其生长、钙化作用和光合作用等生理特征对海洋酸化和光照强度变化的响应。结果表明:海水酸化可以显著抑制仙掌藻的生长率、钙化速率和光合效率,且随酸化程度的加深而加强。酸化条件下(p H 7.50~7.80),生长率、钙化速率和Fv/Fm分别下降了48.29%~58.80%、51.78%~62.29%和2.37%~13.79%;光照强度的增加可以缓解这一抑制作用,高光照下生长率、钙化速率和Fv/Fm分别升高了2.01%~44.55%、29.61%~40.68%和1.68%~6.92%。酸化处理和光照强度变化对色素含量、丙二醛(MDA)和脯氨酸含量影响显著(P <0.01);酸化处理组中的Chl-a含量下降了32.69%~43.44%;而实验第20-28天,低光条件下的类胡萝卜素含量比高光照组高出12.12%~57.45%;酸化胁迫下,MDA在组织中逐渐积累;同时脯氨酸明显升高,以增加藻体自身的抗逆性,缓解胁迫带来的损伤。此外,组织中总碳(TC)和总氮(TN)含量在酸化条件下显著增加(P <0.05),光照强度的增加也一定程度上有利于提高TC和TN含量。通过分析可知,海洋酸化对仙掌藻的威胁是多方面的,对其生长、钙化作用和光合作用等生理过程的抑制作用随着酸化程度的加深而增加,而光照强度的增加一定程度上可以缓解酸化带来的负面效应。这些结果可以为预测未来海洋酸化对钙质生物的影响和珊瑚礁生物的多样性保护提供理论参考。
        While various responses of tropical calcifying species to ocean acidification have been widely reported, the modulating potential of irradiance combined with elevated p CO2 is not well studied. The interactive effects of ocean acidification(pH=7.50, 7.80 and 8.10) and irradiance intensities(30 and 180 μmol photons m2·s-1) on the physiology of calcifying green macroalgae Halimeda opuntia were investigated using a fully factorial, 28-day aquaria experiment. The results revealed that the specific growth rate(SGR), net calcification rates(Gnet) and the maximum quantum yield(Fv/Fm) of H. opuntia decreased by 48.29 %~58.80 %, 51.78 %~62.29 % and 2.37 %~13.79 %, respectively, in T1 and T2 treatments. However,when exposed to 180 μmol photons m-2 s-1, SGR, Gnetand Fv/Fm increased by 2.01 %~44.55 %, 29.61 %~40.68 % and1.68 %~6.92 % in two elevated p CO2 treatments. Chl-a contents in elevated p CO2 treatments showed 32.69 %~43.44 % lower than those in ambient p CO2 under high irradiance conditions after 28-day incubation, while the carotenoid content differed depending on elevated p CO2 and irradiance intensities(P < 0.01), which increased by 12.12 %~57.45 % at low irradiance on20~28-day. The malondialdehyde(MDA) content, which was measured every 4 days to evaluate the levels of abiotic stresses,showed higher in elevated p CO2 treatments. However, there were also 2~4 folds increase of proline contents in elevated p CO2 treatments which contributed to protection of membranes from various damages. Tissue total carbon(TC) and nitrogen(TN)was positively correlated to CO2 enrichment(P < 0.05). These results suggested that elevated p CO2 negatively influenced the physiological responses of H. opuntia from contrasting with different irradiance treatments and increasing irradiance intensity may serve to enhance the metabolic performance to ocean acidification in certain cases. Furthermore, the results of present study could provide a theoretical basis for protection of ecological diversity and sustainable development of coral reef ecosystems.
引文
Alexandre A,Silva J,Buapet P,et al,2012.Effects of CO2enrichment on photosynthesis,growth,and nitrogen metabolism of the seagrass Zostera noltii.Ecology and Evolution,2:2625-2635.
    Bates L S,Waldren R P,Teare I D,1973.Rapid determination of free proline for water-stress studies.Plant and Soil,39:205-207.
    Bellwood D R,Hughes T P,Folke C,et al,2004.Confronting the coral reef crisis.Nature,429:827-833.
    Bohnert H J,Jensen R G,1996.Strategies for engineering water stress tolerance in plants.Trends in Biotechnology,14:89-97.
    Brewer P G,1997.Ocean chemistry of the fossil fuel CO2signal:the haline signal of“business as usual”.Geophysical Research Letters,24:1367-1369.
    Caldeira K,Wickett M E,2003.Oceanography:Anthropogenic carbon and ocean pH.Nature,425(6956):365-365.
    Campbell J,Craft J,Muehllehner N,et al,2014.Responses of calcifying algae(Halimeda spp.)ocean acidification:implica-tions for herbivores.Marine Ecology Progress Series,514:43-56.
    Chisholm J R,2000.Calcification by crustose coralline algae on the northern Great Barrier Reef,Australia.Limnology and Oceanography,45(7):1476-1484.
    Diaz-Pulido G,McCook L J,Larkum A W D,et al,2007.Vulnerability of macroalgae of the Great Barrier Reef to climate change//Johnson J,Marshall P,eds.Climate change and the Great Barrier Reef.Great Barrier Reef Marine Park Authority&The Australian Greenhouse Office,151-192.
    Dixon R A,Paiva N L,1995.Stress-induced phenylpropanoid metabolism.Plant Cell,7:1085-1097.
    El-Manawy I M,Shafik M A,2008.Morphological characterization of Halimeda(Lamouroux)from different biotopes on the Red Sea coral reefs of Egypt.American-Eurasian Journal Agriculture and Environment Sciences,3:532-538.
    Fabry V J,Seibel B A,Feely R A,et al,2008.Impacts of ocean acidification on marine fauna and ecosystem process.ICES Journal of Marine Science,65:414-432.
    Gao K,Aruga Y,Asada K,et al,1993.Calcification in the articulated coralline alga Corallina pilulifera,with special reference to the effect of elevated CO2concentration.Marine Biology,117:129-132.
    Gattuso J-P,Magnan A,BilléR,et al,2015.Contrasting futures for ocean and society from different anthropogenic CO2emissions scenarios.Science,349(6243).
    Geiger M,Haake V,Ludewig F,et al,1999.The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis,carbon metabolism,nitrogen metabolism and growth to elevated carbon dioxide in tobacco.Plant Cell Environment,22:1177-1199.
    Gordillo F J,Aguilera J,Jiménez C,2006.The response of nutrient assimilation and biochemical composition of Arctic seaweeds to a nutrient input in summer.Journal of Experimental Botany,57:2661-2671.
    Gordillo F J,Niell F X,Figueroa F L,2001.Non-photosynthetic enhancement of growth by high CO2level in the nitrophilic seaweed Ulva rigida C.Agardh(Chlorophyta).Planta,213:64-70.
    Hemm M R,Rider S D,Ogas J,et al,2004.Light induces phenylpropanoid metabolism in Arabidopsis roots.Plant Journal,38:765-778.
    Hocking P J,Meyer C P,1991.Effects of CO2enrichment and nitrogen stress on growth,and partitioning of dry matter and nitrogen in wheat and maize.Functional Plant Biology,18:339-356.
    Hodges D M,De Long J M,Forney C F,et al,1999.Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds.Planta,207:604-611.
    Hofmann L C,Heiden J,Bischof K,et al,2014.Nutrient availability affects the response of the calcifying chlorophyte Halimeda opuntia(L.)J.V.Lamouroux to low p H.Planta,239:231-242.
    Hofmann L C,Straub S,Bischof K,2013.Elevated CO2levels affect the activity of nitrate reductase and carbonic anhydrase in the calcifying rhodophyte Corallina offcinalis.Journal of Experimental Botany,64:899-908.
    Hofmann L C,Yildiz G,Hanelt D,et al,2012.Physiological responses of the calcifying rhodophyte,Corallina offcinalis(L.),to future CO2levels.Marine Biology,159:783-792.
    Hoskin C M,Reed J K,Mook D H,1986.Production and off bank transport of carbonate sediment,Black Rock,Southwest Little Bahama Bank.Marine Geology,73:125-144.
    Iglesias-Rickaby M D,Halloron P R,Rickaby R E M,et al,2008.Phgtoplankton calcification in a high-CO2word.Science,320:336-340.
    Kleypas J A,Buddemeier R W,Archer D,et al,1999.Geochemical consequences of increased atmospheric carbon dioxide on coral reefs.Science,284:118-120.
    Koch M,Bowes G,Ross C,et al,2013.Climate change and ocean acidification effects on seagrasses and marine macroalgae.Global Change Biology,19:103-132.
    Kuffner I B,Andersson A J,Jokiel P L,et al,2008.Decreased abundance of crustose coralline algae due to ocean acidification.Nature Geoscience,1(2):114-117.
    Lewis E,Wallace D,Allison L J,1998.Program developed for CO2system calculations.Carbon Dioxide Information Analysis Center,Oak Ridge National Laboratory,US Department of Energy,Tennessee.
    Littler M M,Littler D S,1984.Models of tropical reef biogenesis:the contribution of algae//Round F E,Chapman D J,eds.Progress in Phycological Research.Bristol:Biopress,3:323-364.
    Losada M,Guerrero M G,1979.The photosynthetic reduction of nitrate and its regulation.Photosynthesis in relation to model systems.Elsevier,Amsterdam,365-408.
    Orr J C,Fabry V J,Aumont O,et al,2005.Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms.Nature,437:681-686.
    Palacios S L,Zimmerman R C,2007.Response of eelgrass Zostera marina to CO2enrichment:possible impacts of climate change and potential for remediation of coastal habitats.Marine Ecology Progress Series,344:1-13.
    Payri C E,1988.Halimeda contribution to organic and inorganic production in a Tahitian reef system.Coral Reefs,6:251-262.
    Peach,K.E.,Koch,M.S.,Blackwelder,P.L.,2016.Effects of elevated p CO2and irradiance on growth,photosynthesis and calcification in Halimeda discoidea.Marine Ecology Progress Series,544:143-158.
    Peach K E,Koch M S,Blackwelder P L,et al,2017.Calcification and photophysiology responses to elevated p CO2in six Halimeda species from contrasting irradiance environments on Little Cayman Island reefs.Journal of Experimental Marine Biology and Ecology,486:114-126.
    Purvis A C,Peters D B,Hageman R H,1974.Effect of carbon dioxide on nitrate accumulation and nitrate reductase induction in corn seedlings.Plant Physiology,53:934-941.
    Putnam H M,Fan T Y,2008.Effect of temperature on the settlement choice and photophysiology of larvae from the reef coral Stylophpra pistillata.Biological Bulletin,215:135-142.
    Ries J B,Cohen A L,McCorkle D C,2009.Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification.Geology,37:1131-1134.
    Riebesell U,Bellerby R G J,Engel A,et al,2008.Comment on“phytoplankton calcification in a high-CO2world”.Science,322(5907):1466.
    Sarmiento J L,1991.Oceanic uptake of anthropogenic CO2:The major uncertainties.Global Biogeochemical Cycles,5:309-313.
    Short F T,Neckles H A,1999.The effects of global climate change on seagrasses.Aquatic Botany,63:169-196.
    Sinutok S,Hill R,Doblin M A,et al,2012.Microenvironmental changes support evidence of photosynthesis and calcification inhibition in Halimeda under ocean acidification and warming.Coral Reefs,31:1201-1213.
    Smith J E,Smith C M,Vroom P S,et al,2004.Nutrient and growth dynamics of Halimeda tuna on Conch Reef,Florida Keys:possible influence of internal tides on nutrient status and physiology.Limnology and Oceanography 49:1923-1936.
    Steneck R S,Testa V,1997.Are calcareous algae important toreefs today or in the past.Proc 8th Int Coral Reef Sym,1:685-688.
    Stitt M,Krapp A,1999.The interaction between elevated carbon dioxide and nitrogen nutrition:the physiological and molecular background.Plant Cell Environment,22:583-621.
    Strain H H,1951.The pigments of algae:Manual of Phycology.New Tork:Ronald Press.243-262.
    Sun Y G,Wang B,Jin S H,et al,2013.Ectopic Expression of Arabidopsis Glycosyltransferase UGT85A5 Enhances Salt Stress Tolerance in Tobacco.Plos One,8(3):e59924.doi:10.1371/journal.pone.0059924.
    Syrett P J,1981.Nitrogen metabolism of microalgae.Canadian Journal of Fisheries and Aquatic Sciences,210:182-210.
    Teichberg M,Fricke A,Bischol K,2013.Increased physiological performance of the calcifying green macroalga Halimeda opuntia in response to experimental nutrient enrichment on a Caribbean coral reef.Aquatic Biology,104:25-33.
    Wellburn A R,1994.The spectral determination of chlorophyll a and b,as well as total carotenoids,using various solvents with spectrophotometers of different resolution.Journal of Plant Physiology,144:307-313.
    Xia J R,Gao K S,2005.Impacts of elevated CO2concentration on biochemical composition,carbonic anhydrase,and nitrate reduc-tase activity of freshwater green algae.Journal of Integrative Plant Biology,47:668-675.
    Xiong L,Schumaker K S,Zhu J K,2002.Cell signaling during cold,drought,and salt stress.Plant Cell,14:S165-S183.
    Zhao M X,Yu K F,Zhang Q M,et al,2012.Long-term Decline of a Fringing Coral Reef in the Northern South China Sea.Journal of Coastal Research:Volume 28,Issue 5:1088-1099.
    池源,石洪华,丁德文,等,2015.海岛生态脆弱性的内涵、特征及成因探析.海洋学报,37(12):93-105.
    郭亚娟,周伟华,袁翔城,等,2018.两种造礁石珊瑚对海水酸化和溶解有机碳加富的响应.热带海洋学报,37(1):57-63.
    蒋增杰,方建光,王巍,等,2012.乳山宫家岛以东牡蛎养殖水域秋季海-气界面CO2交换通量研究.水产学报,36(10):1592-1598.
    刘亮,吴姗姗,2015.珊瑚礁环境质量变化的价值评估-以涠洲岛为例.海洋通报,34(2):215-221.
    李平,苏海虹,关万春,2014.高CO2和UVR对叉节藻和刚毛藻生长及光化学效率的影响.水生生物学报,38(4):636-641.
    王涛,何广顺,2018.我国海域资源资产定价研究.海洋通报,37(1):1-8.
    韦章良,韩红宾,于克锋,等,2016.三沙湾盐田港养殖海域沉积物中的有机碳、氮和磷.海洋科学,40(3):77-86.
    修淳,张道军,翟世奎,等,2017.西沙石岛礁相白云岩稀土元素地球化学特征及成岩环境分析.海洋通报,36(2):151-159.
    徐海龙,王芮,许莉莉,等,2016.6种海洋双壳类贝壳中碳酸钙、碳酸镁含量的测定.海洋通报,35(4):421-426.
    徐智广,李美真,霍传林,等,2012.高浓度CO2引起的海水酸化对小珊瑚藻光合作用和钙化作用的影响.生态学报,32(3):699-705.
    郑新庆,郭富雯,刘昕明,等,2015.海洋酸化没有显著影响成体鹿角杯形珊瑚的钙化作用和光合能力.海洋学报,37(10):59-68.
    郑仰桥,2006.CO2浓度和阳光紫外辐射变化对珊瑚藻生理生化的影响.汕头:汕头大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700