用户名: 密码: 验证码:
巴丹吉林沙漠北缘拐子湖流沙下垫面近地层湍流强度和陆面过程特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Turbulence Intensity of Surface Layer and Land Surface Processes over Guaizi Lake Shifting Sandy Land on the Northern Margin of Badain Jaran Desert
  • 作者:郑新倩 ; 杨帆 ; 李超凡 ; 潘红林 ; 吉春容 ; 买买提艾力·买买提依明 ; 霍文 ; 杨兴华 ; 周成龙
  • 英文作者:Zheng Xinqian;Yang Fan;Li Chaofan;Pan Honglin;Ji Chunrong;Ali Mamtimin;Huo Wen;Yang Xinghua;Zhou Chenglong;Xinjiang Agro-Meteorolical Observatory;Taklimakan Desert Meteorology Field Experiment Station of CMA, Institute ofDesert Meteorology,China Meteorological Administration;College of Atmospheric Science, Lanzhou University;School of Geographic Sciences, Nanjing University of Information Science and Technology;
  • 关键词:巴丹吉林沙漠 ; 湍流强度 ; 归一化标准差 ; 总体输送系数
  • 英文关键词:Badain Jaran Desert;;turbulence intensity;;normalized standard deviation;;bulk transfer coefficients
  • 中文刊名:中国沙漠
  • 英文刊名:Journal of Desert Research
  • 机构:新疆农业气象台;中国气象局乌鲁木齐沙漠气象研究所中国气象局塔克拉玛干沙漠气象野外科学试验基地;兰州大学大气科学学院;南京信息工程大学地理科学学院;
  • 出版日期:2019-04-17 16:52
  • 出版单位:中国沙漠
  • 年:2019
  • 期:04
  • 基金:中国沙漠气象科学研究基金项目(Sqj2017007);; 国家自然科学基金项目(41505008);; 中央级公益性科研院所基本科研业务费项目(IDM2018001)
  • 语种:中文;
  • 页:106-115
  • 页数:10
  • CN:62-1070/P
  • ISSN:1000-694X
  • 分类号:P425.2
摘要
利用巴丹吉林沙漠北缘拐子湖流沙下垫面2013年7、10月和2014年1、4月的湍流通量资料,计算并分析了研究区近地层湍流强度,同时针对风速分量、温度、水汽和CO_2归一化标准差随稳定度的变化关系和总体输送系数等陆面过程特征进行分析。结果表明:(1)风速各分量的湍流强度均随风速的增加逐渐减小,风速处于2 m·s~(-1)以下时湍流发展最为旺盛。湍流强度主要由水平方向风速分量决定,垂直方向风速的作用较小,且近中性和不稳定层结利于湍流的发展。与其他地区相比,平坦且没有建筑物的沙漠地区,机械湍流较弱,湍流强度相应较小。(2)风速各分量的归一化标准差与稳定度(z/L)均满足1/3次方函数规律,其中垂直方向风速分量的拟合曲线方程较好。(3)动量输送系数C_d具有明显的夏季高、冬季低的变化状态且各月的日变化形态均呈夜间低、日间高的循环形态。热量输送系数C_h的不同月份日变化间并没有明显的排列次序,且日出日落前后具有明显的波动。不稳定层结时,C_d和C_h均随风速的增加逐渐减小;稳定层结时,C_d和C_h均随着风速的增加逐渐上升。
        In this paper, we analyzed the turbulent intensity, the relationship between normalized standard deviations of wind velocity components, temperature, water vapor, CO_2 and stability parameters z/L and bulk transfer coefficients in the atmospheric surface layer over Guaizi Lake shifting sandy land based on land-atmosphere turbulent flux data in July, October 2013 and January and April 2014. The results indicated that the turbulent intensity of wind velocity components decreased with the increase of wind velocity. The development of turbulence was much vigorous, when the average wind velocity was below 2 m·s~(-1). The near-neutral and unstable atmospheric stratification condition were favorable to the development of turbulence. Also, the horizontal components of wind velocity were main factor that could impact turbulent intensity, and the influence of vertical wind velocity was relatively weak. Compared with other underlying surface, because of the desert was relatively flat, the mechanical turbulence of desert was weak. So the turbulent intensity of desert also was small. Further, we also found the normalized standard deviations of wind velocity components(i.e., σ_u/u_*, σ_v/u_* and σ_w/u_*) and stability parameter(z/L) generally met 1/3 power law, and σ_u/u_*, σ_v/u_* and σ_w/u_* increased as the upward of |z/L|. Meanwhile, the regression curve equation of normalized standard deviation of vertical wind speed component and z/L were better than that of horizontal wind speed components. On the other hand, under the near-neutral condition, normalized standard deviations of wind velocity components were approximately constant, which presented more similar to those in hinterland of Taklimakan Desert and Heihe Gobi, and significantly smaller those in alpine meadow and sparse vegetation regions of the Qinghai-Tibet Plateau. In addition, the monthly average daily variation of momentum transfer coefficient(C_d) illustrated the standard unimodal type daily cycle pattern. Meanwhile, the daily variation curve of C_d showed the apparent seasonal variations owing to the difference of season, namely, with the highest C_d in summer, the second in spring and autumn, and the lowest in winter. The monthly mean daily variation of heat transfer coefficient(C_h) presented the less regularity and the obvious fluctuation was found at sunrise and sunset during diurnal variation. Bulk transfer coefficients decrease with increasing wind speeds under unstable atmospheric condition, and increase with increasing wind speeds under stable atmospheric condition.
引文
[1] 魏伟,张宏升.希尔伯特-黄变换技术及在边界层湍流研究中的应用[J].气象学报,2013,71(6):1183-1193.
    [2] 刘树华,李洁,刘和平,等.在EBEX-2000实验资料中湍流谱和局地各向同性特征[J].大气科学,2005,29(2):213-224.
    [3] 李富余,张宏升,李诗明,等.青藏高原当雄地区湍流脉动耗散率特征研究[J].北京大学学报(自然科学版),2004,40(5):781-787.
    [4] 倪攀,金昌杰,王安志,等.科尔沁草地不同大气稳定度下湍流特征谱分析[J].生态学杂志,2009,28(12):2495-2502.
    [5] Dyer A J,Garratt J R,Francey R J,et al.An international turbulence comparison experiment (ITCE 1976)[J].Boundary-Layer Meteorology,1982,24(2):181-209.
    [6] 张宏昇.大气湍流基础[M].北京:北京大学出版社,2014.
    [7] Kolmogorov A N.The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers[J].Proceedings of the Royal Society of London,1968,434(1890):9-13.
    [8] Monin A S,Obukhov A M.Basic Laws of Turbulent Mixing in the Atmosphere near the Ground[R].Trudy Geofizicheskogo Instituta,Akademiya Nauk SSSR,1959:1963-1987.
    [9] Haugen D A,Kaimal J C,Bradley E F.An experimental study of Reynolds stress and heat flux in the atmospheric surface layer[J].Quarterly Journal of the Royal Meteorological Society,2010,97(412):168-180.
    [10] 刘晓虎,王介民.戈壁地区湍流能量耗散率和温度脉动耗散率[J].高原气象,1992,11(4):344-352.
    [11] 徐敏,蒋维楣,胡非,等.湍流湿度脉动特性研究——根据淮河流域实验资料[J].地球物理学报,2002,45(1):17-25.
    [12] 张强,黄荣辉,王胜,等.西北干旱区陆-气相互作用试验(NWC-ALIEX)及其研究进展[J].地球科学进展,2005,20(4):427-441.
    [13] 岳平,牛生杰,胡隐樵,等.春季内蒙古草原地区湍流强度及其相似性函数[J].中国科学(地球科学),2010,40(8):1087-1094.
    [14] 岳平,张强,牛生杰,等.春季内蒙古草原典型晴天与沙尘条件下湍流速度统计特征对比分析[J].高原气象,2011,30(5):1180-1188.
    [15] 奥银焕,吕世华,韩博,等.巴丹吉林沙漠夏季近地层微气象特征分析[J].高原气象,2013,32(6):1682-1691.
    [16] 缪启龙,温雅婷,何清,等.沙漠腹地春夏季近地层大气湍流特征观测分析[J].中国沙漠,2010,30(1):167-174.
    [17] 温雅婷.塔克拉玛干沙漠腹地近地层湍流特征的观测研究[D].南京:南京信息工程大学,2008.
    [18] 胡文峰,何清,杨兴华,等.一次沙尘暴过程中的沙地面微气象要素及起沙参数分析[J].干旱区资源与环境,2012,26(5):73-78.
    [19] 杨帆,郑新倩,努尔阿米娜·依明,等.巴丹吉林沙漠北缘沙尘天气过程中近地面气象要素变化及风沙流结构分析[J].沙漠与绿洲气象,2015(4):67-74.
    [20] Zhou D G,Huang R H.Characterization of turbulent flux transfer over a gobi surface with quality-controlled observations[J].Science China Earth Sciences,2011,54(5):753-763.
    [21] 温雅婷,缪启龙,何清,等.塔中近地层春夏季湍强和湍能变化的观测研究[J].中国沙漠,2010,30(2):439-444.
    [22] Edgar L A,Reginald J H,James R G,et al.Statistics of surface-layer turbulence over terrain with metre-scale heterogeneity[J].Boundary-Layer Meteorology,1998,86(3):379-408.
    [23] 马耀明,马伟强,胡泽勇,等.青藏高原草甸下垫面湍流强度相似性关系分析[J].高原气象,2002,21(5):514-517.
    [24] 尚伦宇,吕世华,张宇,等.青藏高原东部土壤冻融过程中近地层湍流统计特征分析[J].高原气象,2011,30(1):30-37.
    [25] 张宏升,李富余,陈家宜.不同下垫面湍流统计特征研究[J].高原气象,2004,23(5):598-604.
    [26] 陈云刚,张宇,王少影,等.高寒草甸湍流特征量的季节变化特征[J].高原气象,2014,33(3):585-595.
    [27] 刘辉志,洪钟祥.青藏高原改则地区近地层湍流特征[J].大气科学,2000,24(3):289-300.
    [28] 卞林根,陆龙骅,程彦杰,等.青藏高原东南部昌都地区近地层湍流输送的观测研究[J].应用气象学报,2001,12(1):1-13.
    [29] 吴灏,叶柏生,吴锦奎,等.疏勒河上游高寒草甸下垫面湍流特征分析[J].高原气象,2013,32(2):368.
    [30] Mahrt L.Nocturnal boundary-layer regimes[J].Boundary-Layer Meteorology,1998,88(2):255-278.
    [31] 苏红兵,洪钟祥.北京城郊近地层湍流实验观测[J].大气科学,1994,18(6):739-750.
    [32] 徐玉貌,周朝辅,李振华,等.广州市近地层大气的湍流微结构和谱特征[J].大气科学,1993,17(3):338-348.
    [33] 陈铭夏,李宗恺,王庆安.南京市近地层湍流结构及输送特征研究[J].气象科学,2000,20(2):111-119.
    [34] 张强,卫国安,黄荣辉.西北干旱区荒漠戈壁动量和感热总体输送系数[J].中国科学(地球科学),2001,31(9):783-792.
    [35] 张强,卫国安.荒漠戈壁大气总体曳力系数和输送系数观测研究[J].高原气象,2004,23(3):305-312.
    [36] 岳平,张强,李耀辉,等.半干旱草原下垫面动量和感热总体输送系数参数化关系研究[J].物理学报,2013,62(9):519-527.
    [37] 杨兴国,马鹏里,王润元,等.陇中黄土高原夏季地表辐射特征分析[J].中国沙漠,2005,25(1):55-62.
    [38] 岳平,张强,牛生杰,等.草原下垫面湍流动量和感热相似性函数及总体输送系数的特征[J].物理学报,2012,61(21):548-559.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700